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Recap: 

Bootstrapped Perturbation Theory

2

Start from an arbitrary lowest-order process (green = QFT amplitude squared)

Parton showers generate the bremsstrahlung terms of the rest of the 
perturbative series (approximate infinite-order resummation)
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No. of Bremsstrahlung Emissions
(real corrections)

Universality (scaling)

Jet-within-a-jet-within-a-jet-...

Exponentiation

Unitarity

Cancellation of real & virtual singularities

fluctuations within fluctuations

But ≠ full QCD! Only LL Approximation 
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Recap: 

Perturbative Ambiguities

3

6

where λ(a, b, c) = a2+b2+c2−2ab−2bc−2ca is the Källén function, s[i] is the invariant mass squared
of the branching dipole, and mâ,b̂ are the rest masses of the original endpoint partons. The second line
represents the massless case, with the two orientation angles θ and ψ fixed as discussed above.

Immediately following the phase space in eq. (2) is a δ function requiring that the integration variable
tn+1 should be equal to the ordering variable t evaluated on the set of n+1 partons, {p}n+1, i.e. that the
configuration after branching indeed corresponds to a resolution scale of tn+1. We leave the possibility
open that different mappings will be associated with different functional forms for the post-branching
resolution scale, and retain a superscript on t[i] to denote this.

Finally, there are the evolution or showering kernels Ai({p}n→{p}n+1), representing the differen-
tial probability of branching, which we take to have the following form,

Ai({p}n→{p}n+1) = 4παs(µR({p}n+1)) Ci ai({p}n→{p}n+1) , (11)

where 4παs = g2
s is the strong coupling evaluated at a renormalization scale defined by the function

µR, Ci is the color factor (e.g. Ci = Nc = 3 for gg → ggg), and ai is a radiation function, giving a
leading-logarithmic approximation to the corresponding squared evolution amplitude (that is, a parton
or dipole-antenna splitting kernel). When summed over possible overlapping phase-space regions, the
combined result should contain exactly the correct leading soft and collinear logarithms with no over- or
under-counting. Non-logarithmic (‘finite’) terms are in constrast arbitrary. They correspond to moving
around inside the leading-logarithmic uncertainty envelope. The renormalization scale µR could in
principle be a constant (fixed coupling) or running. Again, the point here is not to impose a specific
choice but just to ensure that the language is sufficiently general to explore the ambiguity.

Together, eqs. (2), (4), and (11) can be used as a framework for defining more concrete parton
showers. An explicit evolution algorithm (whether based on partons, dipoles, or other objects) must
specify:

1. The choice of perturbative evolution variable(s) t[i].

2. The choice of phase-space mapping dΦ[i]
n+1/dΦn.

3. The choice of radiation functions ai, as a function of the phase-space variables.

4. The choice of renormalization scale function µR.

5. Choices of starting and ending scales.

The definitions above are already sufficient to describe how such an algorithm can be matched to
fixed order perturbation theory. We shall later present several explicit implementations of these ideas, in
the form of the VINCIA code, see section 5.

Let us begin by seeing what contributions the pure parton shower gives at each order in perturbation
theory. Since∆ is the probability of no branching between two scales, 1−∆ is the integrated branching
probability Pbranch. Its rate of change gives the instantaneous branching probability over a differential

The final states generated by a shower 
algorithm will depend on

→ gives us additional handles for uncertainty estimates, beyond just μR
+ ambiguities can be reduced by including more pQCD → matching!

Ordering & Evolution-
scale choices

Recoils, kinematics

Non-singular terms,
Reparametrizations, 
Subleading Colour

Phase-space limits / suppressions for 
hard radiation and choice of 

hadronization scale 
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So combine them!

Jack of All Orders, Master of None?

Nice to have all-orders solution
But it is only exact in the singular (soft & collinear) limits

→ gets the bulk of bremsstrahlung corrections right, but 
fails equally spectacularly: for hard wide-angle radiation: 
visible, extra jets

… which is exactly where fixed-order calculations work!

4

See: PS, Introduction to QCD, TASI 2012, arXiv:1207.2389

P. Skands Introduction to QCD
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Figure 22: The double-counting problem caused by naively adding cross sections involving
matrix elements with different numbers of legs.

4 Matching at LO and NLO

The essential problem that leads to matrix-element/parton-shower matching can be illustrated
in a very simple way. Assume we have computed the LO cross section for some process, F ,
and that we have added an LL shower to it, as in the left-hand pane of figure 22. We know
that this only gives us an LL description of F + 1. We now wish to improve this from LL to LO
by adding the actual LO matrix element for F + 1. Since we also want to be able to hadronize
these events, etc, we again add an LL shower off them. However, since the matrix element for
F + 1 is divergent, we must restrict it to cover only the phase-space region with at least one
hard resolved jet, illustrated by the half-shaded boxes in the middle pane of figure 22.

Adding these two samples, however, we end up counting the LL terms of the inclusive cross
section for F + 1 twice, since we are now getting them once from the shower off F and once
from the matrix element for F + 1, illustrated by the dark shaded (red) areas of the right-
hand pane of figure 22. This double-counting problem would grow worse if we attempted to
add more matrix elements, with more legs. The cause is very simple. Each such calculation
corresponds to an inclusive cross section, and hence naive addition would give

�tot = �0;incl + �1;incl = �0;excl + 2�1;incl . (66)

Recall the definition of inclusive and exclusive cross sections, equation (59): F inclusive = F
plus anything. F exclusive = F and only F . Thus, �F ;incl =

P1
k=0 �F+k;excl.

Instead, we must match the coefficients calculated by the two parts of the full calculation
— showers and matrix elements — more systematically, for each order in perturbation theory,
so that the nesting of inclusive and exclusive cross sections is respected without overcounting.

Given a parton shower and a matrix-element generator, there are fundamentally three
different ways in which we can consider matching the two [74]: slicing, subtraction, and
unitarity. The following subsections will briefly introduce each of these.

4.1 Slicing

The most commonly encountered matching type is currently based on separating (slicing)
phase space into two regions, one of which is supposed to be mainly described by hard matrix
elements and the other of which is supposed to be described by the shower. This type of ap-
proach was first used in HERWIG [111], to include matrix-element corrections for one emission
beyond the basic hard process [112, 113]. This is illustrated in figure 23. The method has
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Figure 22: The double-counting problem caused by naively adding cross sections involving
matrix elements with different numbers of legs.

4 Matching at LO and NLO

The essential problem that leads to matrix-element/parton-shower matching can be illustrated
in a very simple way. Assume we have computed the LO cross section for some process, F ,
and that we have added an LL shower to it, as in the left-hand pane of figure 22. We know
that this only gives us an LL description of F + 1. We now wish to improve this from LL to LO
by adding the actual LO matrix element for F + 1. Since we also want to be able to hadronize
these events, etc, we again add an LL shower off them. However, since the matrix element for
F + 1 is divergent, we must restrict it to cover only the phase-space region with at least one
hard resolved jet, illustrated by the half-shaded boxes in the middle pane of figure 22.

Adding these two samples, however, we end up counting the LL terms of the inclusive cross
section for F + 1 twice, since we are now getting them once from the shower off F and once
from the matrix element for F + 1, illustrated by the dark shaded (red) areas of the right-
hand pane of figure 22. This double-counting problem would grow worse if we attempted to
add more matrix elements, with more legs. The cause is very simple. Each such calculation
corresponds to an inclusive cross section, and hence naive addition would give

�tot = �0;incl + �1;incl = �0;excl + 2�1;incl . (66)

Recall the definition of inclusive and exclusive cross sections, equation (59): F inclusive = F
plus anything. F exclusive = F and only F . Thus, �F ;incl =

P1
k=0 �F+k;excl.

Instead, we must match the coefficients calculated by the two parts of the full calculation
— showers and matrix elements — more systematically, for each order in perturbation theory,
so that the nesting of inclusive and exclusive cross sections is respected without overcounting.

Given a parton shower and a matrix-element generator, there are fundamentally three
different ways in which we can consider matching the two [74]: slicing, subtraction, and
unitarity. The following subsections will briefly introduce each of these.

4.1 Slicing

The most commonly encountered matching type is currently based on separating (slicing)
phase space into two regions, one of which is supposed to be mainly described by hard matrix
elements and the other of which is supposed to be described by the shower. This type of ap-
proach was first used in HERWIG [111], to include matrix-element corrections for one emission
beyond the basic hard process [112, 113]. This is illustrated in figure 23. The method has
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http://arxiv.org/abs/arXiv:1207.2389
http://arxiv.org/abs/arXiv:1207.2389
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Image Credits: istockphoto

Matching 1: Slicing

First emission: “the HERWIG correction”
Use the fact that the angular-ordered HERWIG parton shower has a 
“dead zone” for hard wide-angle radiation (Seymour, 1995)

Many emissions: the MLM & CKKW-L prescriptions 

5
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Figure 23: HERWIG’s original matching scheme [112, 113], in which the dead zone of the
HERWIG shower was used as an effective “matching scale” for one emission beyond a basic
hard process.

since been generalized by several independent groups to include arbitrary numbers of addi-
tional legs, the most well-known of these being the CKKW [114], CKKW-L [115, 116], and
MLM [117, 118] approaches.

Effectively, the shower approximation is set to zero above some scale, either due to the
presence of explicit dead zones in the shower, as in HERWIG, or by vetoing any emissions
above a certain matching scale, as in the (L)-CKKW and MLM approaches. The empty part of
phase space can then be filled by separate events generated according to higher-multiplicity
tree-level matrix elements (MEs). In the (L)-CKKW and MLM schemes, this process can be
iterated to include arbitrary numbers of additional hard legs (the practical limit being around
3 or 4, due to computational complexity).

In order to match smoothly with the shower calculation, the higher-multiplicity matrix ele-
ments must be associated with Sudakov form factors (representing the virtual corrections that
would have been generated if a shower had produced the same phase-space configuration),
and their ↵s factors must be chosen so that, at least at the matching scale, they become identi-
cal to the choices made on the shower side [119]. The CKKW and MLM approaches do this by
constructing “fake parton-shower histories” for the higher-multiplicity matrix elements. By ap-
plying a sequential jet clustering algorithm, a tree-like branching structure can be created that
at least has the same dominant structure as that of a parton shower. Given the fake shower
tree, ↵s factors can be chosen for each vertex with argument ↵s(p?) and Sudakov factors can
be computed for each internal line in the tree. In the CKKW method, these Sudakov factors
are estimated analytically, while the MLM and CKKW-L methods compute them numerically,
from the actual shower evolution.

Thus, the matched result is identical to the matrix element (ME) in the region above the
matching scale, modulo higher-order (Sudakov and ↵s) corrections. We may sketch this as

Matched (above matching scale) =

MEz }| {
Exact ⇥

correctionsz }| {
(1 + O(↵s)) , (67)

where the “shower-corrections” include the approximate Sudakov factors and ↵s reweighting
factors applied to the matrix elements in order to obtain a smooth transition to the shower-
dominated region.

Below the matching scale, the small difference between the matrix elements and the
shower approximation can be dropped (since their leading singularities are identical and this
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Figure 24: Slicing, with up to two additional emissions beyond the basic process. The showers
off F and F + 1 are set to zero above a specific “matching scale”. (The number of coefficients
shown was reduced a bit in these plots to make them fit in one row.)

region by definition includes no hard jets), yielding the pure shower answer in that region,

Matched (below matching scale) =

showerz }| {
Approximate +

correctionz }| {
(Exact � Approximate)

= Approximate + non-singular
! Approximate . (68)

This type of strategy is illustrated in figure 24.
As emphasized above, since this strategy is discontinuous across phase space, a main point

here is to ensure that the behavior across the matching scale be as smooth as possible. CKKW
showed [114] that it is possible to remove any dependence on the matching scale through
NLL precision by careful choices of all ingredients in the matching; technical details of the
implementation (affecting the O(↵s) terms in eq. (67)) are important, and the dependence
on the unphysical matching scale may be larger than NLL unless the implementation matches
the theoretical algorithm precisely [115, 116, 120]. Furthermore, since the Sudakov factors
are generally computed using showers (MLM, L-CKKW) or a shower-like formalism (CKKW),
while the real corrections are computed using matrix elements, care must be taken not to (re-
)introduce differences that could break the detailed real-virtual balance that ensures unitarity
among the singular parts, see e.g., [119].

It is advisable not to choose the matching scale too low. This is again essentially due
to the approximate scale invariance of QCD imploring us to write the matching scale as a
ratio, rather than as an absolute number. If one uses a very low matching scale, the higher-
multiplicity matrix elements will already be quite singular, leading to very large LO cross
sections before matching. After matching, these large cross sections are tamed by the Sudakov
factors produced by the matching scheme, and hence the final cross sections may still look
reasonable. But the higher-multiplicity matrix elements in general contain subleading singu-
larity structures, beyond those accounted for by the shower, and hence the delicate line of
detailed balance that ensures unitarity has most assuredly been overstepped. We therefore
recommend not to take the matching scale lower than about an order of magnitude below the
characteristic scale of the hard process.

One should also be aware that all strategies of this type are quite computing intensive.
This is basically due to the fact that a separate phase-space generator is required for each of
the n-parton correction terms, with each such sample a priori consisting of weighted events
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Examples: MLM, CKKW, CKKW-L

(Mangano, 2002)(CKKW & Lönnblad, 2001) (+many more recent; see Alwall et al., EPJC53(2008)473)
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The “CKKW” Prescription
Start from a set of fixed-order MEs

6

�inc
F �inc

F+1(Qcut) �inc
F+2(Qcut)

Separate Phase-Space Integrations

Wish to add showers while eliminating Double Counting: 
Transform inclusive cross sections, for “X or more”, to exclusive ones, for “X and only X”

�exc

F+2

(QF+2

)

Now add a genuine parton shower → remaining evolution down to confinement scale

Start from QF+2Start from Qcut

�exc

F+1

(Q
cut

)

�exc

F+1

(QF+1

)

Jet Algorithm (CKKW) → Recluster back to F → “fake” brems history
Or use statistical showers (Lönnblad), now done in all implementations

Reweight each internal line by shower Sudakov factor & each vertex by αs(µPS)

�exc

F (Q
cut

)

Reweight each external line by shower Sudakov factor

Catani, Krauss, Kuhn, Webber, JHEP11(2001)063
Lönnblad, JHEP05(2002)046
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Z→udscb ; Hadronization OFF ; ISR OFF ; udsc MASSLESS ; b MASSIVE ; ECM = 91.2 GeV ; Qmatch = 5 GeV
SHERPA 1.4.0 (+COMIX) ; PYTHIA 8.1.65 ;  VINCIA 1.0.29 (+MADGRAPH 4.4.26) ; 

gcc/gfortran v 4.7.1 -O2 ; single 3.06 GHz core (4GB RAM)

Sl ic ing: The Cost

7

0.1s

1s

10s

100s

1000s

2 3 4 5 6

Z→n : Number of Matched Emissions

1s

10s

100s

1000s

10000s

2 3 4 5 6

Z→n : Number of Matched Emissions

1. Initialization time
(to pre-compute cross sections 

and warm up phase-space grids)

SHERPA+COMIX

SHERPA (C
KKW-L)

2. Time to generate 1000 events
(Z → partons, fully showered & 
matched. No hadronization.)

1000 SHOWERS

(example of st
ate of th

e art)
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Matching: Classic Example

8

W + Jets
Important at the LHC
Consider σ(W+njets)

Pure PYTHIA (shower)
(includes LO matching 
for njet ≤ 1, more later)
Shower for njet ≥ 2 

ALPGEN+PYTHIA (MLM)
Includes LO matching 
for njet ≤ 3

mcplots.cern.ch

W
ith Matching

W
ithout Matching

RATIO

ETj > 20 GeV
|ηj| < 2.8

Number of Jets

W+Jets
LHC 7 TeV

Note: but the cross-section 
normalization is still only LO!
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(Counter-Example)

9

QCD Multi-Jets:
Even at 6 jets, there is 
almost always at least 
one strongly ordered 
path

→ showers work!

(In W+jets, that is not 
the case)

→ Matching not 
always needed.

But note that spin 
correlations between 
the jets are still absent 
in the shower treatment
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Matching 2: Subtraction

LO × Shower NLO

10

X(2) X+1(2) …

X(1) X+1(1) X+2(1) X+3(1) …

Born X+1(0) X+2(0) X+3(0) …

…

… 

Fixed-Order Matrix Element

Shower Approximation

X(2) X+1(2) …

X(1) X+1(1) X+2(1) X+3(1) …

Born X+1(0) X+2(0) X+3(0) …

Examples: MC@NLO, aMC@NLO
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Matching 2: Subtraction

LO × Shower NLO - ShowerNLO

11

X(2) X+1(2) …

X(1) X+1(1) X+2(1) X+3(1) …

Born X+1(0) X+2(0) X+3(0) …

…

… 

Fixed-Order Matrix Element

Shower Approximation … Fixed-Order ME minus Shower 
Approximation (NOTE: can be < 0!)

X(2) X+1(2) …

X(1) X+1(1) X+2(1) X+3(1) …

Born X+1(0) X+2(0) X+3(0) …

Expand shower approximation to 
NLO analytically, then subtract:

Examples: MC@NLO, aMC@NLO
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Matching 2: Subtraction

LO × Shower (NLO - ShowerNLO) 
× Shower

12

X(2) X+1(2) …

X(1) X+1(1) X+2(1) X+3(1) …

Born X+1(0) X+2(0) X+3(0) …

…

… 

Fixed-Order Matrix Element

Shower Approximation

… Fixed-Order ME minus Shower 
Approximation (NOTE: can be < 0!)

X(1) X(1) …

X(1) X(1) X(1) X(1) …

Born X+1(0) X(1) X(1) …

… Subleading corrections generated by 
shower off subtracted ME 

Examples: MC@NLO, aMC@NLO
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Matching 2: Subtraction

13

Combine → MC@NLO
Consistent NLO + parton shower (though correction events can have w<0)

Recently, has been almost fully automated in aMC@NLO

X(2) X+1(2) …

X(1) X+1(1) X+2(1) X+3(1) …

Born X+1(0) X+2(0) X+3(0) …

NLO: for X inclusive
LO for X+1
LL: for everything else

Note 1: NOT NLO for X+1

Note 2: Multijet tree-level 
matching still superior for X+2

NB: w < 0 are a problem because they kill efficiency:  
Extreme example: 1000 positive-weight - 999 negative-weight events → statistical precision of 1 
event, for 2000 generated (for comparison, normal MC@NLO has ~ 10% neg-weights)

Frederix, Frixione, Hirschi, Maltoni, Pittau, Torrielli, JHEP 1202 (2012) 048

Frixione, Webber, JHEP 0206 (2002) 029

Examples: MC@NLO, aMC@NLO
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Standard Paradigm: 
Have ME for X, X+1,…, X+n;  
Want to combine and add showers   →    “The Soft Stuff” 

Works pretty well at low multiplicities
Still, only corrected for “hard” scales; Soft still pure LL.

At high multiplicities:
Efficiency problems: slowdown from need to compute and 
generate phase space from dσX+n, and from unweighting 
(efficiency also reduced by negative weights, if present) 
Scale hierarchies: smaller single-scale phase-space region
Powers of alphaS pile up

Better Starting Point: a QCD fractal?

Matching 3: ME Corrections

14

Double counting, IR 
divergences, multiscale logs
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Interleaved Paradigm: 
Have shower; want to improve it using ME for X, X+1, …, X+n.

Interpret all-orders shower structure as a trial 
distribution 

Quasi-scale-invariant: intrinsically multi-scale (resums logs)

Unitary: automatically unweighted (& IR divergences → multiplicities)

More precise expressions imprinted via veto algorithm: ME 
corrections at LO, NLO, …  → soft and hard
No additional phase-space generator or σX+n calculations → fast 

Interleaved Paradigm: 
Have shower; want to improve it using ME for X, X+1, …, X+n.

Interpret all-orders shower structure as a trial 
distribution 

Quasi-scale-invariant: intrinsically multi-scale (resums logs)

Unitary: automatically unweighted (& IR divergences → multiplicities)

More precise expressions imprinted via veto algorithm: ME 
corrections at LO, NLO, …  → soft and hard corrections
No additional phase-space generator or σX+n calculations → fast 

Automated Theory Uncertainties
For each event: vector of output weights (central value = 1) 
+ Uncertainty variations. Faster than N separate samples; only 
one sample to analyse, pass through detector simulations, etc.

(shameless VINCIA promo)

15

(plug-in to PYTHIA 8 for ME-improved final-state showers, uses helicity matrix elements from MadGraph)

LO: Giele, Kosower, Skands, PRD84(2011)054003           NLO: Hartgring, Laenen, Skands, arXiv:1303.4974

http://arxiv.org/abs/arXiv:1102.2126
http://arxiv.org/abs/arXiv:1102.2126
http://arxiv.org/abs/arXiv:1303.4974
http://arxiv.org/abs/arXiv:1303.4974
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Matching 3: ME Corrections

First Order
PYTHIA: LO1 corrections to most SM and BSM decay 
processes, and for pp → Z/W/H (Sjöstrand 1987)
POWHEG (& POWHEG BOX): LO1 + NLO0 corrections for 
generic processes (Frixione, Nason, Oleari, 2007)

Multileg NLO:
VINCIA: LO1,2,3,4 + NLO0,1 (shower plugin to PYTHIA 8; 
formalism for pp soon to appear) (see previous slide)
MiNLO-merged POWHEG: LO1,2 + NLO0,1 for pp → Z/W/H
UNLOPS: for generic processes (in PYTHIA 8, based on 
POWHEG input) (Lönnblad & Prestel, 2013)
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Illustrations from: PS, TASI Lectures, arXiv:1207.2389
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Start at Born level Virtues: 
No “matching scale”

No negative-weight events
Can be very fast

Examples: PYTHIA, POWHEG, VINCIA

http://arxiv.org/abs/arXiv:1207.2389
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Z→udscb ; Hadronization OFF ; ISR OFF ; udsc MASSLESS ; b MASSIVE ; ECM = 91.2 GeV ; Qmatch = 5 GeV
SHERPA 1.4.0 (+COMIX) ; PYTHIA 8.1.65 ;  VINCIA 1.0.29 (+MADGRAPH 4.4.26) ; 

gcc/gfortran v 4.6 -O2 ; single 3.06 GHz core (4GB RAM)

Time to generate 1000 showers 
(seconds)

0.1

1

10

100

1000

10000

2 3 4 5 6

Z→n : Number of Matched Legs

Initialization Time (seconds)

0.1

1

10

100

1000

2 3 4 5 6

Z→n : Number of Matched Legs

Hadronization 
Time (LEP)

Global Sector SHERPA
Old Global Old Sector

SHERPA 1.4.0
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Figure 7: Comparison of computation speeds between SHERPA version 1.4.0 [27] and VINCIA 1.029 +
PYTHIA 8.171, as a function of the number of legs that are matched to matrix elements, for hadronic Z
decays. Left: initialization time (to precompute cross sections, warm up phase-space grids, etc, before event
generation). Right: time to generate 1000 parton-level showered events (not including hadronization), with
VINCIA’s global and sector showers shown separately, with and without (“old”) helicity dependence. For
comparison, the average time it takes to hadronize such events with PYTHIA’s string hadronization model [28]
is shown as a dashed horizontal line. Further details on the setup used for these runs are given in the text.

complicated structures in phase space. This means that even fairly clever multi-channel strate-
gies have a hard time achieving high efficiency over all of it. In GKS, this problem is circum-
vented by generating the phase space by a (trial) shower algorithm, which is both algorithmi-
cally fast and is guaranteed to get at least the leading QCD singularity structures right1. Since
those structures give the largest contributions, the fact that the trials are less efficient for hard
radiation has relatively little impact on the overall efficiency2. Combining this with the clean
properties of the antenna phase-space factorization and with matching at the preceding orders,
the trial phase-space population at any given parton multiplicity is already very close to the
correct one, and identical to it in the leading singular limits, producing the equivalent of very
high matching-and-unweighting efficiencies.

• Finally, the addition of helicity dependence to the trial generation in this paper allows us to
match to only a single helicity amplitude at a time, at each multiplicity. This gives a further
speed gain relative to the older approach [9] in which one had to sum over all helicity con-
figurations at each order. In addition, the MHV-type helicity configurations tend to give the
dominant contribution to the spin-summed matrix element. MHV amplitudes are also those
best described by the shower because they contain the maximum number of soft and collinear
singularities.

The speed of the old (helicity-independent) VINCIA algorithm was examined in [7], for the pro-
cess of Z decay to quarks plus showers, and was there compared to SHERPA [27], as an example of a
slicing-based multileg matching implementation. In fig. 7, we repeat this comparison, including now

1A related type of phase-space generator is embodied by the SARGE algorithm [25], and there are also similarities with
the forward-branching scheme proposed in [26].

2As long as all of phase-space is covered and the trials remain overestimates over all of it, something which we have
paid particular attention to in VINCIA, see [9].

Z→udscb ; Hadronization OFF ; ISR OFF ; udsc MASSLESS ; b MASSIVE ; ECM = 91.2 GeV ; Qmatch = 5 GeV
SHERPA 1.4.0 (+COMIX) ; PYTHIA 8.1.65 ;  VINCIA 1.0.29 + MADGRAPH 4.4.26 ; 

gcc/gfortran v 4.7.1 -O2 ; single 3.06 GHz core (4GB RAM)

Speed
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1. Initialization time
(to pre-compute cross sections 

and warm up phase-space grids)

SHERPA+COMIX

PYTHIA+VINCIA

2. Time to generate 1000 events
(Z → partons, fully showered & 
matched. No hadronization.)
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e art)

Larkoski, Lopez-Villarejo, Skands, PRD 87 (2013) 054033

se
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s
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1000 SHOWERS
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http://arxiv.org/abs/arXiv:1301.0933
http://arxiv.org/abs/arXiv:1301.0933
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Color Flow

Between which partons do confining 
potentials arise?

Set of simple rules for color flow, based on large-NC limit

19

Illustrations from: P.Nason & P.S., 
PDG Review on MC Event Generators, 2012

q ! qg

Figure 1.1: Color development of a shower in e+e� annihilation. Systems of color-connected
partons are indicated by the dashed lines.

1.1.5 Color information

Shower MC generators track large-Nc color information during the development of the
shower. In the large-Nc limit, a quark is represented by a color line, i.e. a line with an
arrow in the direction of the shower development, an antiquark by an anticolor line, with
the arrow in the opposite direction, and a gluon by a pair of color-anticolor lines. The rules
for color propagation are:

. (1.9)

At the end of the shower development, partons are connected by color lines. We can have
a quark directly connected by a color line to an antiquark, or via an arbitrary number of
intermediate gluons, as shown in fig 1.1. It is also possible for a set of gluons to be connected
cyclically in color, as e.g. in the decay �� ggg.

The color information is used in angular-ordered showers, where the angle of color-
connected partons determines the initial angle for the shower development, and in dipole
showers, where dipoles are always color-connected partons. It is also used in hadronization
models, where the initial strings or clusters used for hadronization are formed by systems of
color-connected partons.

1.1.6 Electromagnetic corrections

The physics of photon emission from light charged particles can also be treated with a shower
MC algorithm. A high-energy electron, for example, is accompanied by bremsstrahlung
photons, which considerably a⇥ect its dynamics. Also here, similarly to the QCD case,
electromagnetic corrections are of order �em ln Q/me, or even of order �em ln Q/me ln E�/E
in the region where soft photon emission is important, so that their inclusion in the simulation
process is mandatory. This can be done with a Monte Carlo algorithm. In case of photons
emitted by leptons, at variance with the QCD case, the shower can be continued down
to values of the lepton virtuality that are arbitrarily close to its mass shell. In practice,
photon radiation must be cut o⇥ below a certain energy, in order for the shower algorithm to
terminate. Therefore, there is always a minimum energy for emitted photons that depends
upon the implementations (and so does the MC truth for a charged lepton). In the case of
electrons, this energy is typically of the order of its mass. Electromagnetic radiation below
this scale is not enhanced by collinear singularities, and is thus bound to be soft, so that the
electron momentum is not a⇥ected by it.
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arrow in the direction of the shower development, an antiquark by an anticolor line, with
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At the end of the shower development, partons are connected by color lines. We can have
a quark directly connected by a color line to an antiquark, or via an arbitrary number of
intermediate gluons, as shown in fig 1.1. It is also possible for a set of gluons to be connected
cyclically in color, as e.g. in the decay �� ggg.

The color information is used in angular-ordered showers, where the angle of color-
connected partons determines the initial angle for the shower development, and in dipole
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models, where the initial strings or clusters used for hadronization are formed by systems of
color-connected partons.
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The physics of photon emission from light charged particles can also be treated with a shower
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process is mandatory. This can be done with a Monte Carlo algorithm. In case of photons
emitted by leptons, at variance with the QCD case, the shower can be continued down
to values of the lepton virtuality that are arbitrarily close to its mass shell. In practice,
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g ! gg

(Never Twice Same Color: true up to O(1/NC2))
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Confinement

20

Short Distances ~ 
“Coulomb”

Partons

Long Distances ~ 
Linear Potential

Quarks (and 
gluons) confined 
inside hadrons

Potential between a quark and an 
antiquark as function of distance, R

~ Force required to lift a 16-ton truck

What physical
system has a 
linear potential?
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String Breaks

In “unquenched” QCD
g→qq → The strings would break

21

Illustrations by T. Sjöstrand

(simplified colour representation)

String Breaks:
via Quantum Tunneling

P / exp

 
�m2

q � p2?
/⇡

!

→ Gaussian pT spectrum
→ Heavier quarks suppressed. Prob(q=d,u,s,c) ≈ 1 : 1 : 0.2 : 10-11 
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The (Lund) String Model

22

Map:

• Quarks → String 
Endpoints

• Gluons → Transverse 
Excitations (kinks)

• Physics then in terms of 
string worldsheet 
evolving in spacetime

• Probability of string 
break (by quantum 
tunneling) constant per 
unit area → AREA LAW

Simple space-time picture
Details of string breaks more complicated (e.g., baryons, spin multiplets)

Pedagogical Review: B. Andersson, The Lund model. 
Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol., 1997.
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Fragmentation Function

23

Spacetime Picture
Fragmentation starts in the middle and spreads outwards:

z

tqq m2
⊥

m2
⊥

1
2

but breakup vertices causally disconnected
⇒ can proceed in arbitrary order
⇒ left–right symmetry

P(1,2) = P(1) × P(1 → 2)

= P(2) × P(2 → 1)

⇒ Lund symmetric fragmentation function
f(z) ∝ (1 − z)a exp(−bm2

⊥/z)/z  0

 0.5

 1

 1.5

 2

 2.5

 3

 0  0.2  0.4  0.6  0.8  1

f(z), a = 0.5, b= 0.7

mT
2 = 0.25
mT

2 = 1
mT

2 = 4

time

spatial
separation

The meson M takes a fraction 
z of the quark momentum, 

How big that fraction is, 
z ∈ [0,1], 

is determined by the 
fragmentation function, 

f(z,Q02)

leftover string,
further string breaks

String Break

q

M
Spacelike Separation
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Left-Right Symmetry

Causality → Left-Right Symmetry

→ Constrains form of fragmentation function!
→ Lund Symmetric Fragmentation Function 
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a=0.1

b=0.5 b=2

b=1, mT=1 a=0.5, mT=1

Small a 
→ “high-z tail”

Small b 
→ “low-z enhancement”

c u t o ↵ Q
had

, m a y b e l a r g e r t h a n t h e p u r e l y n o n - p e r t u r b a t i v e /⇡ a b o v e , t o a c c o u n t f o r e ↵ e c t s
o f a d d i t i o n a l u n r e s o l v e d s o f t - g l u o n r a d i a t i o n b e l o w Q

had

. I n p r i n c i p l e , t h e m a g n i t u d e o f t h i s
a d d i t i o n a l c o m p o n e n t s h o u l d s c a l e w i t h t h e c u t o ↵ , b u t i n p r a c t i c e i t i s u p t o t h e u s e r t o
e n f o r c e t h i s b y r e t u n i n g t h e r e l e v a n t p a r a m e t e r w h e n c h a n g i n g t h e h a d r o n i z a t i o n s c a l e .

S i n c e q u a r k m a s s e s a r e d i � c u l t t o d e fi n e f o r l i g h t q u a r k s , t h e v a l u e o f t h e s t r a n g e n e s s
s u p p r e s s i o n i s d e t e r m i n e d f r o m e x p e r i m e n t a l o b s e r v a b l e s , s u c h a s t h e K/⇡ a n d K⇤/⇢ r a t i o s .
T h e p a r t o n - s h o w e r e v o l u t i o n g e n e r a t e s a s m a l l a m o u n t o f s t r a n g e n e s s a s w e l l , t h r o u g h p e r -
t u r b a t i v e g ! ss̄ s p l i t t i n g s . T h e o p t i m a l v a l u e f o r t h e n o n - p e r t u r b a t i v e 2 s/( u + d) r a t i o
s h o u l d t h e r e f o r e e x h i b i t a m i l d a n t i c o r r e l a t i o n w i t h t h e a m o u n t o f q u a r k s p r o d u c e d i n t h e
p e r t u r b a t i v e s t a g e .

B a r y o n p r o d u c t i o n c a n a l s o b e i n c o r p o r a t e d , b y a l l o w i n g s t r i n g b r e a k s t o p r o d u c e p a i r s
o f diquarks, l o o s e l y b o u n d s t a t e s o f t w o q u a r k s i n a n o v e r a l l ¯3 r e p r e s e n t a t i o n . A g a i n , s i n c e
d i q u a r k m a s s e s a r e d i � c u l t t o d e fi n e , t h e r e l a t i v e r a t e o f d i q u a r k t o q u a r k p r o d u c t i o n i s
e x t r a c t e d , e . g . f r o m t h e p/⇡ r a t i o , a n d s i n c e t h e p e r t u r b a t i v e s h o w e r s p l i t t i n g s d o n o t p r o d u c e
d i q u a r k s , t h e e ↵ e c t i v e v a l u e f o r t h i s p a r a m e t e r i s m i l d l y c o r r e l a t e d w i t h t h e a m o u n t o f g ! qq̄
s p l i t t i n g s o c c u r r i n g o n t h e s h o w e r s i d e . M o r e a d v a n c e d s c e n a r i o s f o r b a r y o n p r o d u c t i o n h a v e
a l s o b e e n p r o p o s e d , s e e [ 4 8 ] . W i t h i n t h e PYTHIA f r a m e w o r k , a f r a g m e n t a t i o n m o d e l i n c l u d i n g
b a r y o n s t r i n g j u n c t i o n s [ 4 9 ] i s a l s o a v a i l a b l e .

T h e n e x t s t e p o f t h e a l g o r i t h m i s t h e a s s i g n m e n t o f t h e p r o d u c e d q u a r k s w i t h i n h a d r o n
m u l t i p l e t s . U s i n g a n o n r e l a t i v i s t i c c l a s s i fi c a t i o n o f s p i n s t a t e s , t h e f r a g m e n t i n g q m a y c o m -
b i n e w i t h t h e q̄0 f r o m a n e w l y c r e a t e d b r e a k u p t o p r o d u c e a m e s o n —o r b a r y o n , i f d i q u a r k s
a r e i n v o l v e d —o f a g i v e n v a l e n c e q u a r k s p i n S a n d a n g u l a r m o m e n t u m L . T h e l o w e s t - l y i n g
p s e u d o s c a l a r a n d v e c t o r m e s o n m u l t i p l e t s , a n d s p i n - 1 / 2 a n d - 3 / 2 b a r y o n s , a r e a s s u m e d t o
d o m i n a t e i n a s t r i n g f r a m e w o r k 1 , b u t i n d i v i d u a l r a t e s a r e n o t p r e d i c t e d b y t h e m o d e l . T h i s
i s t h e r e f o r e t h e s e c t o r t h a t c o n t a i n s t h e l a r g e s t a m o u n t o f f r e e p a r a m e t e r s .

F r o m s p i n c o u n t i n g , t h e r a t i o V/P o f v e c t o r s t o p s e u d o s c a l a r s i s e x p e c t e d t o b e 3 , b u t i n
p r a c t i c e t h i s i s o n l y a p p r o x i m a t e l y t r u e f o r B m e s o n s . F o r l i g h t e r fl a v o r s , t h e d i ↵ e r e n c e i n
p h a s e s p a c e c a u s e d b y t h e V – P m a s s s p l i t t i n g s i m p l i e s a s u p p r e s s i o n o f v e c t o r p r o d u c t i o n .
W h e n e x t r a c t i n g t h e c o r r e s p o n d i n g p a r a m e t e r s f r o m d a t a , i t i s a d v i s a b l e t o b e g i n w i t h
t h e h e a v i e s t s t a t e s , s i n c e s o - c a l l e d f e e d - d o w n f r o m t h e d e c a y s o f h i g h e r - l y i n g h a d r o n s t a t e s
c o m p l i c a t e s t h e e x t r a c t i o n f o r l i g h t e r p a r t i c l e s , s e e s e c t i o n 1 . 2 . 3 . F o r d i q u a r k s , s e p a r a t e
p a r a m e t e r s c o n t r o l t h e r e l a t i v e r a t e s o f s p i n - 1 d i q u a r k s v s . s p i n - 0 o n e s a n d , l i k e w i s e , h a v e
t o b e e x t r a c t e d f r o m d a t a .

W i t h p2

? a n d m2 n o w fi x e d , t h e fi n a l s t e p i s t o s e l e c t t h e f r a c t i o n , z , o f t h e f r a g m e n t i n g
e n d p o i n t q u a r k ’ s l o n g i t u d i n a l m o m e n t u m t h a t i s c a r r i e d b y t h e c r e a t e d h a d r o n , a n a s p e c t
f o r w h i c h t h e s t r i n g m o d e l i s h i g h l y p r e d i c t i v e . T h e r e q u i r e m e n t t h a t t h e f r a g m e n t a t i o n b e
i n d e p e n d e n t o f t h e s e q u e n c e i n w h i c h b r e a k u p s a r e c o n s i d e r e d ( c a u s a l i t y ) i m p o s e s a “ l e f t -
r i g h t s y m m e t r y ” o n t h e p o s s i b l e f o r m o f t h e f r a g m e n t a t i o n f u n c t i o n , f ( z ) , w i t h t h e s o l u t i o n

f ( z ) / 1

z
( 1 � z ) a e x p

✓
�b ( m2

h

+ p2

?h

)

z

◆
, ( 1 . 1 1 )

1
The PYTHIA implementation includes the lightest pseudoscalar and vector mesons, with the four L = 1

multiplets (scalar, tensor, and 2 pseudovectors) available but disabled by default, largely because several

states are poorly known and thus may result in a worse overall description when included. For baryons, the

lightest spin-1/2 and -3/2 multiplets are included.

1 3

String Break

q

z
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Fig. 21: Illustration of the iterative selection of flavours and momenta in the Lund string fragmentation model.

practice this is only approximately true for B

⇤
/B. For lighter flavours, the difference in phase space

caused by the V –S mass splittings implies a suppression of vector production. Thus, for D

⇤
/D, the

effective ratio is already reduced to about ⇠ 1.0 – 2.0, while for K

⇤
/K and ⇢/⇡, extracted values

range from 0.3 – 1.0. Recall, as always, that these are production ratios of primary hadrons, hence
feed-down complicates the extraction of these parameters from experimental data, in particular for
the lighter hadron species. The production of higher meson resonances is assumed to be low in a
string framework23. For diquarks, separate parameters control the relative rates of spin-1 diquarks vs.
spin-0 ones and, likewise, have to extracted from data, with resulting values of order (qq)1/(qq)0 ⇠
0.075 – 0.15.

With p

2
? and m

2 now fixed, the final step is to select the fraction, z, of the fragmenting end-
point quark’s longitudinal momentum that is carried by the created hadron. In this respect, the string
picture is substantially more predictive than for the flavour selection. Firstly, the requirement that the
fragmentation be independent of the sequence in which breakups are considered (causality) imposes
a “left-right symmetry” on the possible form of the fragmentation function, f(z), with the solution

f(z) / 1

z

(1� z)

a
exp

✓
�b (m

2
h + p

2
?h)

z

◆
, (68)

which is known as the Lund symmetric fragmentation function (normalized to unit integral). As a
by-product, the probability distribution in invariant time ⌧ of q

0
q̄ breakup vertices, or equivalently

� = (⌧)

2, is also obtained, with dP/d� / �

a
exp(�b�) implying an area law for the colour flux,

and the average breakup time lying along a hyperbola of constant invariant time ⌧0 ⇠ 10

�23
s [68].

The a and b parameters are the only free parameters of the fragmentation function, though a may
in principle be flavour-dependent. Note that the explicit mass dependence in f(z) implies a harder
fragmentation function for heavier hadrons (in the rest frame of the string).

The iterative selection of flavours, p?, and z values is illustrated in figure 21. A parton produced
in a hard process at some high scale QUV emerges from the parton shower, at the hadronization scale
QIR, with 3-momentum ~p = (~p?0, p+), where the “+” on the third component denotes “light-cone”
momentum, p± = E ± pz . Next, an adjacent d

¯

d pair from the vacuum is created, with relative
transverse momenta ±p?1. The fragmenting quark combines with the ¯

d from the breakup to form a
23The four L = 1 multiplets are implemented in PYTHIA, but are disabled by default, largely because several states are

poorly known and thus may result in a worse overall description when included.
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Iterative String Breaks
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Illustration by T. Sjöstrand

Causality → May iterate from outside-in
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The HERWIG Cluster Model

“Preconfinement”:
colour flow is local
in coherent shower evolution

●

subprocess

underlying
event

p

jet jet

p

hard

●

+

0Z

ee −

●

1) Introduce forced g → qq branchings
2) Form colour singlet clusters

3) Clusters decay isotropically to 2 hadrons according to
phase space weight ∼ (2s1 + 1)(2s2 + 1)(2p∗/m)

simple and clean, but . . .

Universal 
spectra!

Alternative: The Cluster Model

“Preconfinement”
+ Force g→qq splittings at Q0

→ high-mass q-qbar “clusters” 

Isotropic 2-body decays to hadrons

according to PS ≈ (2s1+1)(2s2+1)(p*/m)
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The HERWIG Cluster Model

“Preconfinement”:
colour flow is local
in coherent shower evolution

●

subprocess

underlying
event

p

jet jet

p

hard

●

+

0Z

ee −

●

1) Introduce forced g → qq branchings
2) Form colour singlet clusters

3) Clusters decay isotropically to 2 hadrons according to
phase space weight ∼ (2s1 + 1)(2s2 + 1)(2p∗/m)

simple and clean, but . . .

(but high-
mass tail 

problematic)



P.  S k a n d s

Strings and Clusters

Small strings → clusters. Large clusters → strings

27

String vs. Cluster

c

g

g

b

D−
s

Λ
0

n

η

π+

K∗−

φ

K+

π−

B
0

program PYTHIA HERWIG
model string cluster
energy–momentum picture powerful simple

predictive unpredictive
parameters few many
flavour composition messy simple

unpredictive in-between
parameters many few

“There ain’t no such thing as a parameter-free good description”

(&SHERPA)
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Tuning

28

Theory Exper iment

Adjus t  th i s to  agree wi th  th i s

→  Sc ience
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In Practice

VINCIA PYTHIA

…
“Virtual Colliders” 

= Simulation Codes

→ Simulated Particle Collisions

Real Universe
→ Experiments & Data

Particle Accelerators, Detectors, and 
Statistical Analyses 

→ Published Measurements

29

Events Histograms

Particle Physics Models, 
Algorithms, … 
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What is Tuning?

The value of the strong coupling at the Z pole 
Governs overall amount of radiation

Renormalization Scheme and Scale for αs 
1- vs 2-loop running, MSbar / CMW scheme, µR ~ pT2

Additional Matrix Elements included?
At tree level / one-loop level?  Using what scheme? 

Ordering variable, coherence treatment, effective 
1→3 (or 2→4), recoil strategy, …

Branching Kinematics (z definitions, local vs global momentum 
conservation), hard parton starting scales / phase-space cutoffs, 
masses, non-singular terms, …

30

FSR pQCD Parameters
αs(mZ)

αs Running

Matching

Subleading Logs
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String Tuning

Lund Symmetric Fragmentation Function
The a and b parameters

Scale of string breaking process
IR cutoff and <pT> in string breaks

Mesons
Strangeness suppression, Vector/Pseudoscalar, η, η’, … 

Baryons
Diquarks, Decuplet vs Octet, popcorn, junctions, … ?

31

Longitudinal FF = f(z)

pT in string breaks

Meson Multiplets

Baryon Multiplets
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Fragmentation Tuning

32

Multiplicity Distribution
of Charged Particles (tracks)

at LEP (Z→hadrons)

Momentum Distribution
of Charged Particles (tracks)

at LEP (Z→hadrons)

<Nch(MZ)> ~ 21 ξp = Ln(xp) = Ln( 2|p|/ECM )

Note: use infrared-unsafe observables - sensitive to hadronization (example)
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PYTHIA 8 (hadronization off)

Need IR Corrections?

33

vs LEP: Thrust
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Significant Discrepancies (>10%)
for T < 0.05, Major < 0.15, Minor < 0.2, and for all values of Oblateness

These variables can be categorised into two classes, according to the minimal number of

final-state particles required for them to be non-vanishing: the most common variables

require three particles (and are thus closely related to three-jet final states), while several

other variables were constructed such that they require at least four particles (related to

four-jet final states).

Among the event shapes requiring three-particle final states, six variables were studied

in great detail: the thrust T [19], the normalised heavy jet mass M2
H/s [20], the wide

and total jet broadenings BW and BT [21], the C-parameter [22] and the transition from

three-jet to two-jet final states in the Durham jet algorithm Y3 [23].

(a) Thrust, T [19]

The thrust variable for a hadronic final state in e+e− annihilation is defined as [19]

T = max
!n

(∑

i |!pi · !n|
∑

i |!pi|

)

, (2.1)

where !pi denotes the three-momentum of particle i, with the sum running over all

particles. The unit vector !n is varied to find the thrust direction !nT which maximises

the expression in parentheses.

The maximum value of thrust, T → 1, is obtained in the limit where there are only

two particles in the event. For a three-particle event the minimum value of thrust is

T = 2/3.

(b) Heavy hemisphere mass, M2
H/s [20]

In the original definition [20] one divides the event into two hemispheres. In each

hemisphere, Hi, one also computes the hemisphere invariant mass as:

M2
i /s =

1

E2
vis





∑

k∈Hi

pk





2

, (2.2)

where Evis is the total energy visible in the event. In the original definition, the

hemisphere is chosen such that M2
1 +M2

2 is minimised. We follow the more customary

definition whereby the hemispheres are separated by the plane orthogonal to the

thrust axis.

The larger of the two hemisphere invariant masses yields the heavy jet mass:

ρ ≡ M2
H/s = max(M2

1 /s,M2
2 /s) . (2.3)

In the two-particle limit ρ → 0, while for a three-particle event ρ ≤ 1/3.

The associated light hemisphere mass,

M2
L/s = min(M2

1 /s,M2
2 /s) (2.4)

is an example of a four-jet observable and vanishes in the three-particle limit.

At lowest order, the heavy jet mass and the (1 − T ) distribution are identical. How-

ever, this degeneracy is lifted at next-to-leading order.

– 3 –

1� T ! 1

2
1� T ! 0

Major

Minor

Oblateness
= Major - MinorMinorMajor1-T
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Need IR Corrections?

34
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Note:  Value of Strong coupling is
αs(MZ) = 0.14

1

These variables can be categorised into two classes, according to the minimal number of

final-state particles required for them to be non-vanishing: the most common variables

require three particles (and are thus closely related to three-jet final states), while several

other variables were constructed such that they require at least four particles (related to

four-jet final states).

Among the event shapes requiring three-particle final states, six variables were studied

in great detail: the thrust T [19], the normalised heavy jet mass M2
H/s [20], the wide

and total jet broadenings BW and BT [21], the C-parameter [22] and the transition from

three-jet to two-jet final states in the Durham jet algorithm Y3 [23].

(a) Thrust, T [19]

The thrust variable for a hadronic final state in e+e− annihilation is defined as [19]

T = max
!n

(∑

i |!pi · !n|
∑

i |!pi|

)

, (2.1)

where !pi denotes the three-momentum of particle i, with the sum running over all

particles. The unit vector !n is varied to find the thrust direction !nT which maximises

the expression in parentheses.

The maximum value of thrust, T → 1, is obtained in the limit where there are only

two particles in the event. For a three-particle event the minimum value of thrust is

T = 2/3.

(b) Heavy hemisphere mass, M2
H/s [20]

In the original definition [20] one divides the event into two hemispheres. In each

hemisphere, Hi, one also computes the hemisphere invariant mass as:

M2
i /s =

1

E2
vis





∑

k∈Hi

pk





2

, (2.2)

where Evis is the total energy visible in the event. In the original definition, the

hemisphere is chosen such that M2
1 +M2

2 is minimised. We follow the more customary

definition whereby the hemispheres are separated by the plane orthogonal to the

thrust axis.

The larger of the two hemisphere invariant masses yields the heavy jet mass:

ρ ≡ M2
H/s = max(M2

1 /s,M2
2 /s) . (2.3)

In the two-particle limit ρ → 0, while for a three-particle event ρ ≤ 1/3.

The associated light hemisphere mass,

M2
L/s = min(M2

1 /s,M2
2 /s) (2.4)

is an example of a four-jet observable and vanishes in the three-particle limit.

At lowest order, the heavy jet mass and the (1 − T ) distribution are identical. How-

ever, this degeneracy is lifted at next-to-leading order.
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PYTHIA 8 (hadronization on) vs LEP: Thrust
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Value of Strong Coupling
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Note:  Value of Strong coupling is
αs(MZ) = 0.12
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These variables can be categorised into two classes, according to the minimal number of

final-state particles required for them to be non-vanishing: the most common variables

require three particles (and are thus closely related to three-jet final states), while several

other variables were constructed such that they require at least four particles (related to

four-jet final states).

Among the event shapes requiring three-particle final states, six variables were studied

in great detail: the thrust T [19], the normalised heavy jet mass M2
H/s [20], the wide

and total jet broadenings BW and BT [21], the C-parameter [22] and the transition from

three-jet to two-jet final states in the Durham jet algorithm Y3 [23].

(a) Thrust, T [19]

The thrust variable for a hadronic final state in e+e− annihilation is defined as [19]

T = max
!n

(∑

i |!pi · !n|
∑

i |!pi|

)

, (2.1)

where !pi denotes the three-momentum of particle i, with the sum running over all

particles. The unit vector !n is varied to find the thrust direction !nT which maximises

the expression in parentheses.

The maximum value of thrust, T → 1, is obtained in the limit where there are only

two particles in the event. For a three-particle event the minimum value of thrust is

T = 2/3.

(b) Heavy hemisphere mass, M2
H/s [20]

In the original definition [20] one divides the event into two hemispheres. In each

hemisphere, Hi, one also computes the hemisphere invariant mass as:

M2
i /s =

1

E2
vis





∑

k∈Hi

pk





2

, (2.2)

where Evis is the total energy visible in the event. In the original definition, the

hemisphere is chosen such that M2
1 +M2

2 is minimised. We follow the more customary

definition whereby the hemispheres are separated by the plane orthogonal to the

thrust axis.

The larger of the two hemisphere invariant masses yields the heavy jet mass:

ρ ≡ M2
H/s = max(M2

1 /s,M2
2 /s) . (2.3)

In the two-particle limit ρ → 0, while for a three-particle event ρ ≤ 1/3.

The associated light hemisphere mass,

M2
L/s = min(M2

1 /s,M2
2 /s) (2.4)

is an example of a four-jet observable and vanishes in the three-particle limit.

At lowest order, the heavy jet mass and the (1 − T ) distribution are identical. How-

ever, this degeneracy is lifted at next-to-leading order.

– 3 –

1� T ! 1

2
1� T ! 0

Major

Minor

PYTHIA 8 (hadronization on) vs LEP: Thrust
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Wait … is this Crazy?
Best result

Obtained with αs(MZ) ≈ 0.14 
                              ≠ World Average = 0.1176 ± 0.0020

Value of αs depends on the order and scheme
MC ≈ Leading Order + LL resummation
Other leading-Order extractions of αs ≈ 0.13 - 0.14
Effective scheme interpreted as “CMW” → 0.13; 
2-loop running → 0.127; NLO → 0.12 ?

Not so crazy
Tune/measure even pQCD parameters with the actual generator. 
Sanity check = consistency with other determinations at a 
similar formal order, within the uncertainty at that order 
(including a CMW-like scheme redefinition to go to ‘MC scheme’)

36

Improve → Matching at LO and NLO
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Sneak Preview:

Multijet NLO Corrections with VINCIA

37
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Figure 15. L3 light-flavour event shapes: Thrust, C, and D.

The three main event-shape variables that were used to determine the value of ↵
s

(M
Z

)

are shown in figure 15, with upper panes showing the distributions themselves (data and MC)

and lower panes showing the ratios of MC/data, with one- and two-sigma uncertainties on

the data shown by darker (green) and lighter (yellow) shaded bands, respectively. The Thrust

(left) and C-parameter (middle) distributions both have perturbative expansions that start

at O(↵
s

) and hence they are both explicitly sensitive to the corrections considered in this

paper. The expansion of the D parameter (right) begins at O(↵2
s

). It is sensitive to the NLO

3-jet corrections mainly via unitarity, since all 4-jet events begin their lives as 3-jet events in

our framework. It also represents an important cross-check on the value extracted from the

other two variables.

For a pedagogical description of the variables, see [63]. Pencil-like 2-jet configurations are

to the left (near zero) for all three observables. This region is particularly sensitive to non-

perturbative hadronization corrections. More spherical events, with several hard perturbative

emissions, are towards the right (near 0.5 for Thrust and 1.0 for C and D). The maximal ⌧ =

1�T for a 3-particle configuration is ⌧ = 1/3 (corresponding to the Mercedes configuration),

beyond which only 4-particle (and higher) states can contribute. This causes a noticeable

change in slope in the distribution at that point, see the left pane of figure 15. The same thing

happens for the C parameter at C = 3/4, in the middle pane of figure 15. The D parameter

is sensitive to the smallest of the eigenvalues of the sphericity tensor, and is therefore zero for

any purely planar event, causing it to be sensitive only to 4- and higher-particle configurations

over its entire range.

Both the new NLO tune (solid blue line with filled-dot symbols) and the old LO one

(dashed magenta line with open-triangle symbols) reproduce all three event shapes very well.

With the NLO corrections switched o↵ (solid red line with open-circle symbols), the new tune

produces a somewhat too soft spectrum, consistent with its low value of ↵
s

(M
Z

) not being
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First LEP tune with NLO 3-jet corrections
LO tune: αs(MZ) = 0.139 (1-loop running, MSbar)

NLO tune: αs(MZ) = 0.122 (2-loop running, CMW)

      Hartgring, Laenen, Skands, arXiv:1303.4974

http://arxiv.org/abs/arXiv:1303.4974
http://arxiv.org/abs/arXiv:1303.4974
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Summary
Hard Wide-Angle Radiation: Matching

Slicing (Qcut) : MLM, CKKW, CKKW-L
Subtraction (w<0) : MC@NLO
ME Corrections : PYTHIA, POWHEG, VINCIA
Next big steps: 

Combining multileg NLO corrections with parton showers
It’s perturbation theory = we should be able to solve it. Expect this for next run of LHC.
Improving the intrinsic accuracy of showers? NLL, NLC, … ?

Non-perturbative physics
Is still hard. String model remains best bet, but ~ 30 years old by 
now. Ripe for a revolution?

Many things omitted: 
Random-number theory, Underlying Event, BSM, B Physics, Beam 
Remnants, Elastic and Diffractive Scattering, Heavy Ions, ...
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See also: MCnet Review (long): Phys.Rept. 504 (2011) 145-233 and/or PDG Review on 
Monte Carlo Event Generators, and/or PS, TASI Lectures (short): arXiv:1207.2389

http://arxiv.org/abs/arXiv:1101.2599
http://arxiv.org/abs/arXiv:1101.2599
http://arxiv.org/abs/arXiv:1207.2389
http://arxiv.org/abs/arXiv:1207.2389


P.  S k a n d s

MCnet Studentships
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MCnet

MCnet projects:
• PYTHIA (+ VINCIA)

• HERWIG

• SHERPA

• MadGraph

• Ariadne (+ DIPSY)

• Cedar (Rivet/Professor)

Activities include
• summer schools

(2014: Manchester?)

• short-term studentships

• graduate students

• postdocs

• meetings (open/closed)

training studentships

3-6 month fully funded studentships for current PhD 
students at one of the MCnet nodes. An excellent opportunity 
to really understand and improve the Monte Carlos you use!  

www.montecarlonet.org
for details go to:

Monte Carlo

Londo
n

CERN
Karlsru

he

LundDurha
m

Application rounds every 3 months. 

MARIE CURIE ACTIONS

funded by:
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Torbjörn Sjöstrand Monte Carlo Generators and Soft QCD 1 slide 7/40



Oct 2014
→ Monash University
Melbourne, Australia

Come to
Australia

p p

Establishing a new group in Melbourne
 Working on PYTHIA & VINCIA
  NLO Event Generators
   Precision LHC phenomenology & soft physics
    Support LHC experiments, astro-particle  
     community, and future accelerators
      Outreach and Citizen Science



P.  S k a n d s

Slicing
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X(2) X+1(2) …

X(1) X+1(1) X+2(1) X+3(1) …

Born X+1(0) X+2(0) X+3(0) …

…

… 

Fixed-Order Matrix Element

Shower Approximation

… Fixed-Order ME above pT cut
& nothing below

X+1(2) …

X+1(1) X+2(1) X+3(1) …

X+1(0) X+2(0) X+3(0) …

LO0 × PS(pT>pTcut)         +
Std: veto shower above some pTcut

LO1(pT1>pTcut) × PS(pT<pT1)

Highest n: veto shower above pTn

Illustrations from: PS, TASI Lectures, arXiv:1207.2389

Examples: MLM, CKKW, CKKW-L

http://arxiv.org/abs/arXiv:1207.2389
http://arxiv.org/abs/arXiv:1207.2389
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Slicing
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LO0 × PS(pT>pTcut)         +
Std: veto shower above pTcut

LO1(pT1>pTcut) × PS(pT<pT1)

Highest n: veto shower above pTn

…

… 

Fixed-Order Matrix Element

Shower Approximation

… Fixed-Order ME above pT cut
& nothing below

…
Fixed-Order ME above pT cut
& Shower Approximation below

X(2) X+1(2) …

X(1) X+1(1) X+2(1) X+3(1) …

Born X+1(0) X+2(0) X+3(0) …

X+1 now LO 
correct for hard 

radiation and still LL 
correct for soft

Examples: MLM, CKKW, CKKW-L

+ Generalizes to 
arbitrary numbers of 

jets (at LO)
Much work on 

extensions to NLO

Illustrations from: PS, TASI Lectures, arXiv:1207.2389

http://arxiv.org/abs/arXiv:1207.2389
http://arxiv.org/abs/arXiv:1207.2389

