Introduction to Lattice QCD and some applications to Nuclear and Hadronic physics

.... in two Lectures

Jaume Carbonell

Ecole Joliot-Curie, Fréjus, 29 sep – 8 oct, 2013

Plan of First Lecture (1h)

Praeludium

Some basic points in QFT

LSZ

QCD Lagrangian

Euclidean formulation

Basic models in euclidean

Euclidean Correlators

The set up of Lattice QCD Gluonic action

Pure glue numerical simulations Wilson and Polyakov loops Quark-antiquark potential Fermionic action Numerical simulations with full QCD Computing observables Finite temperature

Prelude

The solution of a QFT in the non perturbative regime is a hopeless task.

It would require the knowledge of a four-dimensional continuum of singular operators $\Phi(t,x)$ (operateor-valued distributions) satisfying (anti)commutation relations at different space points

 $[\phi(x),\Pi(y)]=i\delta(\vec{x}-\vec{y})$

It has however been possible to obtain the solutions of a wide class of QFT problems (not all) by following a protocol suggested by K. Wilson in the 70's, in the framework of QCD. It consists in using the Feynmann path-integral formulation of the theory in a discretized Euclidean space-time lattice V=L³xT and Monte Carlo integration techniques. It is known as « Lattice Calculations », in particular « Lattice QCD calculations » (LQCD) although the method is in principle applicable to any QFT.

In the LQCD context, all Nuclear and Hadronic Physics can be (should be) obtained by solving *ab-initio* a fundamental theory which depends – essentially - on two parameters: β which controls the lattice spacing a m_q the bare quark mass $m_q = m_q = m_d$

That makes the **strong interaction world as simple as atomic physics**... except in practice !

This lecture aims to shortly describe this fantastic intellectual adventure which, after many troubles, is nowadays reaching a maturity era.

Some basics of QFT

The link betwen QFT and the formal objects manipulated in LQCD is the LSZ reduction formula It states that the **S-matrix elements of a theory can be obtained by the time-ordered correlations functions.**

In the simplest case of $q_1+q_2 \rightarrow p_1+p_2$ process in a scalar theory Φ , e.g., it reads

$$\int d^4x_1 e^{ip_1x_1} \int d^4x_2 e^{ip_2x_2} \int d^4y_1 e^{-iq_1y_1} \int d^4y_2 e^{-q_2y_2} \left\langle 0 \mid T\left\{\hat{\phi}(x_1)\hat{\phi}(x_2)\hat{\phi}(y_1)\hat{\phi}(y_2)\right\} \mid 0 \right\rangle$$

$$= \frac{i\sqrt{Z}}{p_1 - m^2 + i\epsilon} \frac{i\sqrt{Z}}{p_2 - m^2 + i\epsilon} \frac{i\sqrt{Z}}{q_1 - m^2 + i\epsilon} \frac{i\sqrt{Z}}{q_2 - m^2 + i\epsilon} \left\langle p_1p_2; out \mid q_1q_2; in \right\rangle$$

Everything can be computed in terms of time-ordered correlations functions, the LQCD bricks Not need to know $\Phi(x)$ but only vacuum expectation values (vev) of products of $\Phi(x)$

How to compute them ?

Feynman path integral formulation:

$$\langle 0 \mid \hat{O}[\hat{\phi}(x)] \mid 0 \rangle = \int [d\phi] \ O[\phi(x)] \ e^{iS[\phi]} \qquad S = \int d^4x \ \mathcal{L}[\phi(x)] \qquad \ree{-1.5mu} = \ree{-1.5mu} + \ree{-1.5mu} +$$

A <u>quite a tricky</u> approach, handable only on a discretized euclidean world.

All we need is a (classical) lagrangian density...

I. The QCD Lagrangian

Ensemble of N_f =6 spin $\frac{1}{2}$ quarks (u,d,c,s,t,b) Eeach q is represented by a color triplet of spinor fields

$$\mathcal{L}(x) = \sum_{f=1}^{6} \bar{q}_f(x) \left(i\gamma_\mu \partial^\mu - m_f \right) q_f(x)$$

If one impose gauge invariance in color space

$$\begin{array}{rcccc} q(x) & \to & q'(x) = G(x)q(x) & & & G(x) \in SU(3) \\ \bar{q}(x) & \to & \bar{q}'(x) = \bar{q}(x)G^{\dagger}(x) & & & & G(x)G^{\dagger}(x) = 1 \end{array}$$

a vector field $A_{\mu}(x)$ is required, inducing an interaction between quarks

$$\mathcal{L}(x) = \sum_{f=1}^{6} \bar{q}^f(x) \left(i\gamma_\mu D^\mu - m_i \right) q^f(x) \qquad D_\mu = \partial_\mu + igA_\mu$$

The QCD Lagrangian is completed by fixing the $A_{\mu}(x)$ dynamics

$$\mathcal{L}_{QCD}(x) = \sum_{f=1}^{6} \bar{q}^{f}(x) \left(i\gamma_{\mu} D^{\mu} - m_{i} \right) q^{f}(x) - \frac{1}{2} \operatorname{Tr} \left\{ F_{\mu\nu}(x) F_{\mu\nu}(x) \right\}$$

with $g \; F_{\mu\nu} = i[D_\mu,D_\nu]$

In a gauge transform

$$A_{\mu} \to A'_{\mu} = GA_{\mu}G^{\dagger} + \frac{i}{g}(\partial_{\mu}G)G^{\dagger}$$
$$F_{\mu\nu}(x) \to F'_{\mu\nu}(x) = G(x)F_{\mu\nu}(x)G^{\dagger}(x)$$

Everything relies on « gauge invariance »

1

$$q_{\alpha}^{c}(x) = \begin{pmatrix} q_{\alpha}^{b}(x) \\ q_{\alpha}^{r}(x) \\ q_{\alpha}^{v}(x) \end{pmatrix}$$

···· ···· ····

II. Euclidean formulation

It consists in an analytic continuation (imaginary time) of normal QFT

New set of coordinates
$$x_{M}^{\mu} = (x^{0}, x^{1}, x^{2}, x^{3}) \rightarrow x_{E}^{\mu} = (x^{1}, x^{2}, x^{3}, x^{4}) = x_{\mu}^{E}$$

With $x^{4} = +ix^{0} \Rightarrow p^{4} = -ip^{0}$
 $x^{0} = -ix^{4} \Rightarrow p^{0} = +ip^{4}$
and $d^{4}x_{M} = -id^{4}x_{E}$
and $x_{M}.y_{M} \equiv x^{0}y^{0} - x^{1}y^{1} - x^{2}y^{2} - x^{3}y^{3} = -x^{1}y^{1} - x^{2}y^{2} - x^{3}y^{3} - x^{4}y^{4} \equiv -x_{E}.y_{E}$
Euclidean metric $\delta_{\mu\nu}$
Dirac matrices $[\gamma_{\mu}, \gamma_{\mu}]_{+} = 2\delta_{\mu\nu}$
Choice (Montvay) $\vec{\gamma}_{E} = -i\vec{\gamma}_{M}$ $\gamma_{E}^{4} = \gamma_{M}^{0}$
 $\gamma_{E}^{4} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ $\vec{\gamma}_{E} = \begin{pmatrix} 0 & -i\vec{\sigma} \\ i\vec{\sigma} & 0 \end{pmatrix}$ $\gamma^{5} = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$
 $\gamma_{E}^{5} = \begin{pmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 & -1 \\ -1 & 0 & 0 & 0 \end{pmatrix}$
 $\gamma_{E}^{5} = \begin{pmatrix} 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \\ -1 & 0 & 0 & 0 \end{pmatrix}$

an inexhaustible source source of confusion and numerical errors ...

III. Some basic models in euclidean

Exemple 1: Klein Gordon

Exemple 1: Dirac

$$\begin{split} \mathcal{L}_{M}^{D} &= \bar{\Psi}(x) \left[i \gamma_{M}^{\mu} \partial_{\mu}^{M} - m \right] \Psi(x) \\ i \gamma_{M}^{0} \partial_{0} &+ i \gamma_{M}^{1} \partial_{1} = -\gamma_{M}^{0} \partial_{4} + i \gamma_{M}^{1} \partial_{1} = -\gamma_{E}^{4} \partial_{4} - \gamma_{E}^{1} \partial_{1} \qquad \text{since} \quad \gamma_{E}^{4} &= \gamma_{M}^{0} \\ \mathcal{L}_{M}^{D} &= -\mathcal{L}_{E}^{D} \qquad \mathcal{L}_{E}^{D} = \bar{\Psi}(x) \left[\gamma_{E}^{\mu} \partial_{\mu}^{E} + m \right] \Psi(x) \\ S_{M}^{D} &= \int d^{4}x_{M} \ \mathcal{L}_{M}^{D} = -i \int d^{4}x_{E} \ \mathcal{L}_{E}^{D} = i S_{E}^{D} \qquad \text{with} \qquad S_{E}^{D} = \int d^{4}x_{E} \ \mathcal{L}_{E}^{D} \\ e^{i S_{M}^{D}} &= e^{-S_{E}^{D}} \qquad S_{E}^{D} > 0 \qquad \text{(not obvious !)} \end{split}$$

IV. Euclidean correlators

Vacuum expectation value (VEV) of a product of two operators at different (euclidean) times

 $< 0 \mid O_1(t)O_2(0) \mid 0 > 0$

Is a central quantity in LQCD computations.

On one hand it has a simple physical interpretation in terms of interesting physical quantities One can show that:

$$< 0 \mid O_1(t)O_2(0) \mid 0 > = \sum_k < 0 \mid O_1 \mid k > < k \mid O_2 \mid 0 > e^{-(E_k - E_0)t}$$

We use for that (Heisenberg picture)

$$O_H(t) = e^{Ht} O(0) e^{-Ht}$$

and introdcue a complet set of H eigenstate:

$$H \mid n >= E_n \mid n >$$
 $1 = \sum_n \mid n > < n \mid$

On the other hand it is accessible in the numerical simulations of euclidean QFT (as any VEV)

The setup of Lattice QCD

LQCD : Gluonic part

Ingredients

8 gluon vector fields

1 « color-matrix» gluon field λ=Gell-Mann SU(3) matrices

$$\begin{bmatrix} \lambda^a, \lambda^b \end{bmatrix} = 2i f_{abc} \ \lambda^c$$
$$Tr\{\lambda_a \lambda_b\} = 2\delta_{ab}$$

$$A^{a}_{\mu}(x) = \{A^{1}_{\mu}, A^{2}_{\mu}, A^{3}_{\mu}, \dots, A^{8}_{\mu}\}$$

$$A_{\mu}(x) = \frac{1}{2} \sum_{a=1}^{8} \lambda_a A^a_{\mu}(x) = \begin{pmatrix} A^{11}_{\mu} & A^{12}_{\mu} & A^{13}_{\mu} \\ A^{21}_{\mu} & A^{22}_{\mu} & A^{23}_{\mu} \\ A^{31}_{\mu} & A^{32}_{\mu} & A^{33}_{\mu} \end{pmatrix}$$

$$F^a_{\mu\nu}(x) = \partial_\mu A^a_\nu(x) - \partial_\nu A^a_\mu(x) + g \sum_{\beta\gamma} f^a_{\beta\gamma} A^\beta_\mu(x) A^\gamma_\nu(x)$$

10 « color tensor » fields

$$\mathbf{F}_{\mu\nu}(x) = \partial_{\mu}A_{\nu}(x) - \partial_{\nu}A_{\mu}(x) + ig[A_{\mu}(x), A_{\nu}(x)]$$

$$F_{\mu\nu}^{cc'}(x) = \frac{1}{2} \sum_{a} \lambda_{a}^{cc'} F_{\mu\nu}^{a}(x) = \partial_{\mu} A_{\nu}^{cc'}(x) - \partial_{\nu} A_{\mu}^{cc'}(x) + g \sum_{a\beta\gamma} \lambda_{a}^{cc'} f_{\beta\gamma}^{a} A_{\mu}^{\beta}(x) A_{\nu}^{\gamma}(x)$$

Gluonic action
$$\mathcal{S}_g(x) = \frac{1}{2} \int d^4 x \operatorname{Tr} \left[F_{\mu\nu} F_{\mu\nu}(x) \right]$$
 Show: $\mathcal{L}_g = \frac{1}{4} F^a_{\mu\nu} F^a_{\mu\nu}$

it is gauge invariant since $F_{\mu\nu}(x) \to F'_{\mu\nu} = G(x)F_{\mu\nu}(x)G^{\dagger}(x)$

LQCD : Gluonic part

Discretization

« Natural » procedure:

1. Replace derivative by finite differences with lattice spacing a

$$2a \partial_{\mu} A_{\nu}(x) = A_{\nu}(x+\mu) - A_{\nu}(x-\mu) + o(a^{3})$$

$$2a \partial_{\nu} A_{\mu}(x) = A_{\mu}(x+\nu) - A_{\mu}(x-\nu) + o(a^{3})$$

 $2a F_{\mu\nu}(x) = A_{\nu}(x+\mu) - A_{\nu}(x-\mu) - A_{\mu}(x+\nu) + A_{\mu}(x-\nu) + 2iag[A_{\mu}(x), A_{\nu}(x)] + o(a^3)$

2. Insert it in a discret sum over lattice sites

$$S_g = \frac{a^4}{2} \sum_x F_{\mu\nu}(x) F_{\mu\nu}(x)$$

It does not work !

Gauge invariance is lost for a non zero value of a

K.G. Wilson overcame this problem in 74 (Phys Rev D10, 2445) thus giving the starting point of LQCD

LQCD : Gluonic part

Wilson action : consider the « Wilson line » along a « link »

$$U_{\mu}(x) = \exp\left\{ig\int_{x}^{x+\mu} dz_{\mu}A_{\mu}(z)\right\} = e^{igaA_{\mu}(x)} \qquad \qquad U_{\mu}(x) \xrightarrow{\text{Departs from x direction }\mu} \\ U_{\mu}^{\dagger}(x) = \exp\left\{ig\int_{x+\mu}^{x} dz_{\mu}A_{\mu}(z)\right\} = e^{-igaA_{\mu}(x)} \qquad \qquad U_{\mu}^{\dagger}(x) \xrightarrow{\text{Arrive at x from direction }\mu} \\ x \xrightarrow{x+\mu} U_{\mu}^{\dagger}(x) \xrightarrow{x+\mu} dz_{\mu}A_{\mu}(z) = e^{-igaA_{\mu}(x)} \qquad \qquad U_{\mu}^{\dagger}(x) \xrightarrow{x+\mu} dz_{\mu}A_{\mu}(z) = e^{-igA_{\mu}(x)} = e^{-igA$$

Not Gauge Invariant but « good » transformations $U_{\mu}(x) \rightarrow G(x)U_{\mu}(x)G^{\dagger}(x+\mu)$

Consider product of 4 link variables along a « plaquette »

 $U_{\mu\nu}(x) = e^{ia^2 F_{\mu\nu}(x)}$

$$U_{\mu\nu}(x) = U_{\mu}(x) \ U_{\nu}(x+\mu) \ U_{\mu}^{\dagger}(x+\nu)U_{\nu}^{\dagger}(x)$$

Show that:

GREAT !!!

Since by expaning: Re Tr $\{1 - U_{\mu\nu}(x)\} = \frac{a^4}{2}$ Tr $\{F_{\mu\nu}(x)F_{\mu\nu}(x)\} + o(a^6)$

and finally:

$$S_g = \frac{\beta}{3} \sum_{x} \sum_{\mu < \nu} \text{Re Tr} \{1 - U_{\mu\nu}(x)\} = \frac{\beta}{3} \sum_{x} \sum_{\mu < \nu} P_{\mu\nu}(x) \qquad \beta = \frac{6}{g^2}$$

 $x + \nu$ $U^{\dagger}_{\mu}(x + \nu)$ $x + \mu + \nu$

 $U_{\mu}(x)$

 $U_{\nu}^{\dagger}(x)$

x

 $U_{\nu}(x+\mu)$

 $x + \mu$

All kind of improvements: Luscher-Weisz, Iwasaki,...

Pure glue numerical simulations

The Feynman path-integral fromulation for a VEV of any operator

$$<0 \mid \hat{O}[U] \mid 0> = \frac{1}{Z} \int [dU] \; \hat{O}[U] \; e^{-S_g[U]} \qquad Z = \int [dU] \; e^{-S_g[U]}$$

Becomes on a lattice V=L³T $< 0 \mid \hat{O}[U] \mid 0 > = \frac{1}{N} \sum_{i=1}^{N} \hat{O}[\{U\}_i] + O\left(\frac{1}{\sqrt{N}}\right)$

i.e. an aritmetic average of O(U) over an statistical sample of N configurations

$$\{U\}_i = \left\{ U^{(i)}_{\mu}(x_1), U^{(i)}_{\mu}(x_2), \dots, U^{(i)}_{\mu}(x_V) \right\} \qquad \{U\}_i \sim \rho[U] = e^{-S_g[U]}$$

distributed according to a probability law p

How to generate such an ensemble ?

Metropolis algortim:

Start with a more or less arbitrary configuration U_0 (e.g. U = 1 or U = ran)

1. For any link variable $U_{\mu}(x)$ propose random change according to some "democratic" criterion

$$U_{\mu}(x) \to U'_{\mu}(x)$$

2. Compute the resulting modification in the total action

$$\Delta S = S_g(U') - S_g(U)$$

- 3. Generate a random number $r \in [0, 1]$. If $r \le e^{-\Delta S}$ accept the change, otherwise keep $U_{\mu}(x)$ QM is here !
- 4. Go to 1 untill all links are examined

At the end we obtain a new configuration

$$U_n \to U_{n+1}$$

One generates this way a Markov chain reaching a statistical equilibrium.

$$U_0, U_1, \ldots, U_i, U_{i+1}, \ldots$$

Once this is achieved, a series of uncorrelated N measurements can be done.

This seminal method is however not very efficient, specially for gauge theories. More efficient algorithms exists: Heat bath, overrelaxation, Hybrid Monte Carlo (HMC), ...

A first application: the qq potential

Compute Its VEV in a « temporal gauge » $U_4=0$ (since gauge invariant!)

$$< 0 \mid W(\vec{x}, \vec{y}, n_4) \mid 0 > = < 0 \mid \text{Tr}\left\{ S(\vec{x}, \vec{y}, n_4) \; S^{\dagger}(\vec{x}, \vec{y}, 0) \right\} \mid 0 >$$

It s an Euclidean correlator between t=0 and t=n_t, and so

$$<0 \mid W(\vec{x}, \vec{y}, n_4) \mid 0> = \sum_k \sum_{ij} <0 \mid S_{ij}(\vec{x}, \vec{y}, n_4) \mid k> < k \mid S_{ji}^{\dagger}(\vec{x}, \vec{y}, 0) \mid 0> e^{-(E_k - E_0)n_4 a}$$

The excitation energy with respect to vacuum state E_0 is interpreted (not arbitrarily!!!) as the qq excitation energy (potential) at the respectives positions x and y

$$(E_1 - E_0) \equiv V_{q\bar{q}}(r) \qquad r = a \mid \vec{x} - \vec{y} \mid$$

The VEV of the Wilson Loop provides a Lattice measurement of the $\bar{q}q$ potential

$$< 0 \mid W(\vec{x}, \vec{y}, n4) \mid 0 > \sim e^{-V(r) n_4 a} = e^{-V(r) t}$$

It can be numerically computed by the techniques just described

(Good exercise!)

It displays the expected « Cornell » form

$$V(r) = A + \frac{B}{r} + \sigma r$$

The string is « broken » in more elaborate (unquenched) simulations

Polyakov loops

It is a temporal Wilson line over all the lattice t-extend with periodic boundary conditions (so a loop!)

 $P(\vec{x}) = \text{Tr} \{ U_4(\vec{x}, 0) U_4(\vec{x}, 1) U_4(\vec{x}, 2) \dots U_4(\vec{x}, T-1) \} \qquad U_4(\vec{x}, 0) = U_4(\vec{x}, T)$ Abandon the « temportal gauge » !

Used to obtain the $\bar{q}q$ potential independently, since

$$< 0 \mid P(\vec{x}) P^{\dagger}(\vec{y}) \mid 0 > \sim e^{-V(r) aT}$$

The single loop is also used as order parameter in the deconfinement transition of gluonic matter at finite T

 $\eta = <0 \mid P(\vec{x}) \mid 0 >$

All these things are easy-to-compute (even from scratch) and very rich !

LQCD : Fermionic Action

« Naive » discretization

Free fermion action
$$\mathcal{L}_D = \bar{\Psi}(x)(\gamma_\mu \partial_\mu + m)\Psi(x)$$

Discretizing derivative $2a \ \partial_\mu \Psi(x) = \Psi(x+\mu) - \Psi(x-\mu)$
Leads to the discret action $S_F = \frac{a^3}{2} \sum_x \bar{\Psi}_x \sum_\mu \gamma_\mu \left[\Psi_{x+\hat{\mu}} - \Psi_{x-\hat{\mu}}\right] + Ma^4 \sum_x \bar{\Psi}_x \Psi_x$

Local term is gauge invariant but non local ones not !

$$\bar{\Psi}_x \Psi_{x+\hat{\mu}} \to \bar{\Psi}'_x \Psi'_{x+\hat{\mu}} = \bar{\Psi}_x G^{\dagger}(x) G(x+\mu) \Psi_{x+\mu}$$

Gauge invariance is restored buy inserting « link operators » in forward and backward derivatives

$$\bar{\Psi}_x \Psi_{x+\hat{\mu}} \longrightarrow \bar{\Psi}_x \ U_{\mu}(x) \ \Psi_{x+\hat{\mu}} \bar{\Psi}_x \Psi_{x-\hat{\mu}} \longrightarrow \bar{\Psi}_x \ U_{-\mu}(x) \ \Psi_{x-\hat{\mu}}$$

One obtains this way a « naive », gauge invariant, fermionic action action

$$S_F = \frac{a^3}{2} \sum_x \bar{\Psi}_x \sum_\mu \gamma_\mu \left[U_\mu(x) \Psi_{x+\hat{\mu}} - U_\mu^{\dagger}(x-\mu) \Psi_{x-\hat{\mu}} \right] + M a^4 \sum_x \bar{\Psi}_x \Psi_x$$

It use to be writen as a bilinear form in terms of the Dirac operator D, a key ingredienty in LQCD

$$S_F = a^4 \sum_{x,y} \bar{\Psi}_x D_{xy} \Psi_y \qquad D_{xy} = M \delta_{xy} + \frac{1}{2a} \sum_{\mu} \gamma_\mu \left[U_\mu(x) \delta_{x+\mu,y} - U_\mu^\dagger(x-\mu) \delta_{x-\mu,y} \right]$$

(color and spinor indexs are implicit)

But we are not done yet

The « doubling » problem and the « Wilson action »

When inspecting S_F, one can see* that it actually represents 16 fermion propagating on the lattice!

Wilson proposed a way to remove 15 unwanted poles. Technically this is done by adding an additional Laplacian term to D

$$D_{xy}^{W} = D_{xy} - \frac{a}{2}\Delta_{xy} \qquad \Delta_{xy} = \frac{1}{a^2} \sum_{\mu=1}^{4} U_{\mu}(x)\delta_{x+\mu,y} - 2\delta_{xy} + U_{\mu}^{\dagger}(x-\mu)\delta_{x-\mu,y}$$

Putting all together

$$D_{xy}^{W} = \left(M + \frac{4}{a}\right)\delta_{xy} + \frac{1}{2a}\sum_{\mu}\left[(1 - \gamma_{\mu})U_{\mu}(x)\delta_{x+\mu,y} - (1 + \gamma_{\mu})U_{\mu}^{\dagger}(x-\mu)\delta_{x-\mu,y}\right]$$

(*)The fermion propagator is given by the invers of D.

This is the first (and simplest) example of a long series of discretized « fermionic actions »

Wilson - « Clover » (Sheikholeslami-Whoelert 1985)

Add a term to the Wilson action $\mathcal{L}_C(x) = \sigma_{\mu\nu}C_{\mu\nu}(x)$ $\sigma_{\mu\nu} = -\frac{i}{2}[\gamma_{\mu}, \gamma_{\nu}]$ $8iC_{\mu\nu}(x) = f_{\mu\nu}(x) - f^{\dagger}_{\mu\nu}(x)$

Staggered fermions (Kogut Suskind)

Split 1 component in 4 « tastes » distributed in the lattice. To recover the initial fields one use the « det^{1/4} trick ». Unclear but very fast simulations

Domain-Wall (Kaplan 1992): Introducing a 5th dimension

Ginsparg-Wilson Overlap: Neuberger

As a solution to Ginzparg-Wilson equation $[D, \gamma_5]_+ = aD\gamma_5 d$ to get good chiral properties

$$D = \frac{1}{a} \left(1 - \gamma_5 \frac{A}{\sqrt{A^2}} \right) \qquad A = \gamma_5 D_W$$

The very best... but numerically very expensive !

Twisted-mass fermions (Frezzoti, Rossi, Sint, Papinutto,..)

Introduce an imaginary mass in a isospin doublet In the « γ_5 direction »

$$D_{tw} = D_W + i\mu\gamma_5\tau_3$$

$$S = \sum_{x} \Psi[D+m]\Psi = \sum_{x} \sum_{i=1}^{4} \chi_{i}[f(x)D+m]\chi_{i}$$

Numerical simulation with Full LQCD

Whatever the particular choice of discretization one has

$$S_{QCD} = S_q[\bar{q}, q, U] + S_g[U]$$

with

$$\begin{split} S_g &= a^4 \sum_{xy} \dots \\ S_q &= a^4 \sum_{xy}^x \bar{q}_x D_{xy}[U] q_y \\ &< \mid \hat{O}(q, \bar{q}, U) \mid > = \frac{1}{Z} \int [dU] [d\bar{q}] (dq] \; O(q, \bar{q}, U) \; e^{-S_q - S_g} \\ \end{split}$$

One aims

$$Z = \int [dU] [d\bar{q}] (dq] \ e^{-S_q - S_g}$$

Integrals over fermionic fields (Grassmann variables) are performed analytically: THE LQCD MIRACLE !

- for Z

$$Z = \int [dU] \left\{ \int [d\bar{q}](dq) \ e^{-S_q[\bar{q},q,U]} \right\} \ e^{-S_g[U]} = \int [dU] \ Z_F[U] \ e^{-S_g[U]}$$

$$Z_F[U] = \int [d\bar{q}][dq] e^{-S_q[\bar{q},q,U]} = \det \ [D(U)]$$

- for fermion propagator

$$< | q_{\alpha}(x)\bar{q}_{\beta}(y) | > = \frac{1}{Z} \int [dU] \left\{ \int [d\bar{q}](dq) q_{\alpha}(x)\bar{q}_{\beta}(y) e^{-S_{q}[\bar{q},q,U]} \right\} e^{S_{g}[U]} = \frac{1}{Z} \int [dU] O_{F}[U] e^{S_{g}[U]}$$

$$O_{F}[U] = \int [d\bar{q}](dq) q_{\alpha}(x)\bar{q}_{\beta}(y) e^{-S_{q}[\bar{q},q,U]} = \left[D^{-1} \right]_{\alpha x,\beta y} \det \left[D(U) \right]$$
finally $< | q_{\alpha}(x)\bar{q}_{\beta}(y) | > = \frac{1}{Z} \int [dU] \left[D^{-1} \right]_{\alpha x,\beta y} \det \left[D(U) \right] e^{S_{g}[U]}$

In the discretized version

$$S_{\alpha\beta}(x,y) = < |q_{\alpha}(x)\bar{q}_{\beta}(y)| > = \frac{1}{N} \sum_{i=1}^{N} \left[D^{-1}[U_i] \right]_{\alpha x,\beta y}$$

with U_i distributed according to a probability law

$$\rho(U) = \frac{1}{Z} \det \left[D(U) \right] e^{S_g[U]}$$

Contrary to scalar and glue case, calculations require:

- Invert huge matrices ! (Iterative processes D*X)
- Compute determinant in generating gauge configurations (HMC) Never « brut force » but introducing additional fields and using

« Quenched » and « uquenched » (dynamical) simulations

Det(D) accounts for the $\bar{q}q$ loops from gluons propagators (not trivial!)

If q_1 and q_2 det(D)=det(D_1) x Det(D_2)

One talks about dynamical calculations with $n_f=0$, 2(u,d), 2+1(u,d,s), 2+1+1(u,d,c,s)

The case $n_f=0$ corresponds to det(D)=1 is called « quenched » ... and things are much easier !!!

$$\det(A) = \frac{1}{Z} \int d\phi \ e^{-\phi^{\dagger} (AA^{\dagger})^{-1/2} \phi}$$

Dirac matrice in practice

All numerics in "Lattice" consists essentially in solving linear systems D*x=b with D=Dirac operator,

That is, with an almost empty matrix... but very large

This explain the almost perfect scalability in parallel supercomputers (BGQ 400 000 CPU)

SUMMARY

OOMINIA (1)	6	
LQCD: Many discretized QCD action $\mathcal{L}_{QCD} = \sum \bar{q}_s D(U) q_s + \mathcal{L}_g(U)$		
$U_{\mu}(y) \in SU(3)$	On each « link » 4 SU(3) matrices	On each si te 3 x 4 x N _f complex « fields »
	(gluons)	(quarks)
$U_{\mu}(x) = \exp$	$\left\{\frac{iag}{2} \sum_{c=1}^{8} \int_{0}^{1} d\tau A^{c}_{\mu}(x+a\tau\mu)\lambda^{c}\right\}$	$\in SU(3)$ $\left(\left(\begin{array}{c} \cdots \\ \cdots \\ \cdots \\ \cdots \\ \cdots \end{array} \right) \right)$
L T V 24 48 660 000		$\left(q_{f}^{b}(x) \right)$
32 64 2 100 000 48 96 10 600 000		$q_f(x) = \left(\begin{array}{c} q_f^r(x) \\ q_f^r(x) \end{array} \right) = \left[\begin{array}{c} \cdots \\ \cdots \\ \cdots \\ \cdots \\ \end{array} \right]$
64 128 32 200 000		$\langle q_f^v(x) \rangle$
96 192 169 600 000		
Parameters:		
- "bare" quark masses m _l =m	_u =m _d , m _s ,	
To control the "physical	value" of m _I , one computes n	n _π (m _π ²=B m _q)
lf m _π =140 MeV… <mark>m</mark> ι is t	the right one ! But it is almost	never he case !!!
- one parameter β that contro	Is the "lattice spacing"	
one goes down to a=0.05 fm	n (Erro	ors due to discretisation: o(a), o(a2),)
- Lattice L	(Erro	ors due to "finite volume" L x a fm)

- n_f = number of quarks in the loops in unquenched calculations (n_f =0,2,2+1,2+1+1,...)

COMPUTING OBSERVABLES

Each observable requires an specific approach.

My aim in what follows is to illustrate with some detail two particular cases:

Meson masses

Consider space-time propagation of $\bar{q}q$

Compute correlator between currents J

$$C(t) = \sum_{\vec{x}} < 0 \mid J(x)J^{\dagger}(0) \mid 0 >$$

Simplest case $J(x) = \bar{u}(x)d(x)$

$$C(t) = \sum_{\vec{x}} \langle 0 | \bar{u}(x)d(x)\bar{d}(0)u(0) | 0 \rangle$$

= $-\sum_{\vec{x}} \langle 0 | d(x)\bar{d}(0) | 0 \rangle \langle 0 | u(0)\bar{u}(x) | 0 \rangle$
= $-\sum_{\vec{x}} \operatorname{Tr} [S_d(x,0)S_u(0,x)]$
= $-\sum_{\vec{x}} \operatorname{Tr} [S_d(x,0)\gamma_5 S_u^{\dagger}(x,0)\gamma_5]$

Exo:
$$J_P(x) = i\bar{u}(x)\gamma_5 d(x)$$
 $C_P(t) = \sum_{\vec{x}} \text{Tr}\left\{ [\gamma_5 S_d(x,0)] [\gamma_5 S_u(x,0)]^{\dagger} \right\}$

On another hand $< 0 \mid O_1(t)O_2(0) \mid 0 > = \sum_n < 0 \mid O_1 \mid n > < n \mid O_2 \mid 0 > e^{-E_n t} \sim e^{-E_0 t}$

This provides an effcient way to compute meson masses

$$aM_{eff}(t) = \log \frac{C(t)}{C(t+1)}$$

Baryon masses (N)

First step: "built " a N (in fact a $J^{\pi}=1/2^+$ state) by combining 3 q fields

$$C_{\alpha\beta}(x,y) = \langle 0 \mid N_{\alpha}(x)\bar{N}_{\beta}(y) \mid 0 \rangle = \sum C_{\alpha\beta}^{abcd} \langle 0 \mid q_{\alpha}(x)q_{b}(x)\bar{q}_{\beta}(y)\bar{q}_{c}(y)\bar{q}_{d}(y) \mid 0 \rangle$$

It is a v.e.v. of a product of 6 quark fields q(x) Wick Th: sum of products of **q propagators** ("contractions")

$$S_{ss'}^{cc'}(x) = <0|q_s^c(x)\bar{q}_{s'}^{c'}(0)|0> \qquad D_{s's}^{c'c}(x,y)\ S_{ss"}^{cc"}(y) = \delta^{c'c"}\delta^{s's"}\delta(x)$$

N mass is extracted from matrix elements of this correlator 4x4 (y=0)

$$\operatorname{Tr}\left[C_{\alpha\beta}(t)\right] = \operatorname{Tr}\left[\sum_{\vec{x}} C_{\alpha\beta}(\vec{x},t)\right] \sim e^{-aM_N t}$$

The method can be extended to (6A) q fields and access to A-baryon system

Things becomes quickly complicated

$$\chi^{p}(x) = \epsilon^{abc} [u^{Ta}(x)C \gamma_{5}d^{b}(x)]u^{c}(x) \qquad C = \gamma_{0}\gamma_{2}$$

$$\chi^{n}(x) = \epsilon^{abc} [d^{Ta}(x)C \gamma_{5}u^{b}(x)]d^{c}(x)$$

$$C_{ss'}^{p}(x) = -\epsilon^{abc} \epsilon^{a'b'c'} \left\{ -S_{u}^{cc'} \left[\Gamma^{N} S_{d}^{bb'} \tilde{\Gamma}^{N} \right]^{T} S_{u}^{aa'} + S_{u}^{ca'} \operatorname{Tr}(S_{u}^{ac'} [\Gamma^{N} S_{d}^{bb'} \tilde{\Gamma}^{N}]^{T}) \right\} \right|$$
$$\Gamma^{N} = C\gamma_{5}$$

Example: N

$$aM_{eff}(t) = \log \frac{C(t)}{C(t+1)}$$

Same quality for other baryons (ground state !)

Finite Temperature

There is a close formal analogy between

$$\begin{array}{ll} \textbf{Statistical Mechanics} & =\frac{1}{Z}\sum_{[c]}O([c])e^{-\beta H[s]} & \qquad Z=\sum_{[c]}e^{-\beta H[s]}\\ \beta=\frac{1}{T} & <\hat{O}>=\frac{1}{Z}\text{Tr}\left[\hat{O}\;e^{-\beta\hat{H}}\right] & \qquad Z=\text{Tr}\left[e^{-\beta\hat{H}}\right] \end{array}$$

Lattice Field Theories

$$<\hat{O}>=\frac{1}{Z}\int [d\phi]O[\phi]e^{-S_{E}[\phi]} \qquad Z=\int [d\phi] e^{-S_{E}[\phi]}$$

Temperature is introduced by limiting the temporal extend in the action

$$S_E(\beta, \Phi) = \int_0^\beta dt \int_{R^3} d^3x \mathcal{L}_E(\Phi, \partial_\mu \Phi)$$

identifying

$$aN_T \equiv \beta = \frac{1}{T}$$

The limiting case $aN_T \rightarrow \infty$ corresponds to T=0

Polyakov loops as order parameter

Let us consider a Polyakov loop at some spatial point

$$P(\vec{x}) = \text{Tr} \{ U_4(\vec{x}, 0) U_4(\vec{x}, 1) U_4(\vec{x}, 2) \dots U_4(\vec{x}, T-1) \} \qquad U_4(\vec{x}, 0) = U_4(\vec{x}, T)$$

and average over the spatial lattice $P = \frac{1}{L^3} \sum P(\vec{x})$

(

One can show that its VEV
$$< P>=rac{1}{L^3}\sum_x^x < 0 \mid P(ec{x}) \mid 0>$$

is related to the free energy of a static color charge F_q

$$< P > \sim e^{\beta F_q}$$

It is an order parameter for the confinement/deconfinement transition as a function of T

The case $\langle P \rangle = 0$ correpsonds to an infinite value of $F_q \rightarrow Confined Phase$ The case <**P**>**#0** correpsonds to a **finite value** of **F**_a

- ➔ Deconfined Phase

In the unquenched case the result change dramatically: $T_c (n_f=2+1) \approx 150 \text{ MeV}$! The simple picture of Polyakov order parameter fails and other P are required

Chiral condensate $\langle \bar{q}q \rangle$ or susceptibility $\chi_{ud} = \frac{\partial}{\partial m_{ud}} \left\langle \bar{\psi}\psi \right\rangle_{ud}$ display a phase transition at T very close to \mathbf{r}_{c}

Is
$$T^{chiral}_{c} = T^{confinement}_{c}$$
?

Nobody has prove it: big debate (hotQCD and Wuppertal/Budapest) !

Thermodynamics and equation of state

Knowing $Z(T,V,m_q,...)$ we can acces to usual thermodynamical quantities

Energy density

$$\epsilon = -\frac{1}{V} \frac{\partial \log Z}{\partial \beta} = \frac{T^2}{V} \frac{\partial \log Z}{\partial T}$$

Pression

$$p = T \frac{\partial \log Z}{\partial V}$$

Chiral condensate

$$\Sigma_i = \frac{\partial \log Z}{\partial m_i}$$

From what one can get the "equation of state" $\epsilon(p)$

For a relativistic non interacting gas of q and g

$$p(T) = \frac{\pi^2}{45} \left(8 + \frac{21}{4} N_f \right) T^4$$
$$\epsilon(p) = 3p$$

The "tradition" is to plot rather

or the "Interaction measure" $I = \epsilon(p)-p$

$$\frac{p(T)}{T^4} = f(T)$$
$$\frac{\epsilon(p) - p}{T^4} = f(T)$$

Zero baryon number (pure glue)

Thermodynamics and equation of state

This can be generalized to non zero baryonic number by introducing a quark chemical potential and the grand canonical ensemble.

$$Z(T,\mu) = \operatorname{Tr} \left[e^{-\beta(\hat{H}-\mu_q \hat{N}_q)} \right]$$

 μ_q = quark chemical potential $(\mu_B = 3\mu_q)$ N_q = quark number operator $(\hat{N}_B = 3\hat{N}_q)$

