
Jaume Carbonell 

Ecole Joliot-Curie, Fréjus, 29 sep – 8 oct 2013 

 Introduction to Lattice QCD  
and 

some applications to Nuclear and Hadronic physics. 



Second Lecture: the state of the Art 
 
Hadron spectrum 
  Baryon ground states  
  Related topic (sigma terms)  
  Excites states: in trouble ! 
  More complex systems: from baryons to nuclei 
Scattering states 
Hadron-Hadron Potential 
Baryon Structure observables 
Still problems in the simplest cases 
Some thoughts about the (nuclear) Yukawa model on the lattice (non QCD!) 



HADRON SPECTRUM!



I. Ground states 



ETMC   Alexandrou et al PRD80  (2009) 114503  

Twisted mass + thee level Symanzik G action 
Nf=2 
a=0.07-0.09 fm 
L=2-2.7  fm 
mπ=280-290 MeV  mπL>3.3 

« a » fixed from N  
 
ms determined from K (ETMC) 
 
Continuum limit+Chiral fits with 
-  Cubic expansion on mπ+SU3 (N,Δ)  
-  NLO SU(2) HBχPT                 (S>0)  
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 a(3.90) = 0.089 fm
 a(4.05) = 0.070 fm

3.9 L=24

3.9 L=32

4.05 L=32

16.3 Cubic expansion (p3)

We generalize the ”one loop” expansion for N to the full octet and decuplet 10
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• The Octet pion-baryon couplings can be taken from the SU(3) relations [25]:

gA = D + F gΣΣ = 2F gΞΞ = D − F gΛΣ = 2D

They can be parametrized in terms of the nucleon axial constant gA and the ratio 11

α =
D

D + F

On then has for the coupling constants12

gΛΣ = 2α gA

gΣΣ = 2(1 − α) gA

gΞΞ = (2α − 1) gA (100)

and for the cubic terms
c2(Λ)
c2(N) = 4

3α2

c2(Σ)
c2(N) = 8

3

(

1 − 2α + 7
6α2

)

c2(Ξ)
c2(N) = (2α − 1)2

The value of α is poorly known

1. In [26] on takes the values D = 1.47/2, F = gA − D, α = 0.58

10We use here, as in [25], fπ = Fπ = 130.70MeV = 92.419(7)(25)
√

2 MeV
11

D = α gA

F = (1 − α)gA (99)

12There ere differences with respect to Perre
√

3gP
ΛN = gJ

ΛN and gP
ΞΞ = −gJ

ΞΞ

59

The main source of errors comes from the fact 
that simulations are not done with physical q  
Results must be "extrapolated to physical point” 

Is the Higgs particle the origin of the mass ?  



BMW   S.Durr et al. Science 322 (2008) 1224   

Wilson-Clover + tree level Symanzik G action 
Nf=2+1 
a=0.06-0.12 fm 
mπ=190MeV  
mπL>4 

A possible collaboration 
between Japan-Germany in near future
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BMW collaboration HAL QCD collaboration

HAL  will ride on the BMW ?
2011年5月11日水曜日

Since, they succeed simulations with mπ=120 MeV ! 



QCD: meson/baryon spectrum

Ground state B=0,1 spectrum of QCD

[A Kronfeld, 1209.3468]
points correspond to different sets of calculations

Summary of different collaborations 



Isospin symmetry is broken in the more recent calculations 
- mu # md 

- Incorporate electromagnetic effects between quarks (QCD+QED “quenched”) 
The mass difference (1°/°°) in isospin multiplets (N,Σ,Ξ,K) has been calculated 
 
Of particular interest is Mn-Mp which governs the weak decay and stability of nuclear chart 
It results from a cancellation of opposite tendencies (if mu=md , Mp>Mn …  still H atomes ?)  

Groud state masses are entering now a precision era…   

4.4 Final results and discussion 97

intuitively expect. The electromagnetic splittings of the nucleon and the ⌅ are expected to be
dominated by the QED self-energy from the charged particle (respectively p and ⌅�). In our
results �

QED

MN and �
QED

M
⌅

have the same magnitude and opposite sign, which is in agree-
ment with the previous statement (the opposite sign comes from the definition of the splittings).
Regarding �

QED

M
⌃

which involves two particles with the same unit of charge, one would expect
a large cancellation between the self-energies. Our result is also in agreement with this statement:
�

QED

M
⌃

is found to be almost compatible with 0.
Concerning the separation into strong and electromagnetic parts, there exist very few deter-

minations of these quantities up to now. In the review [Gasser and Leutwyler, 1982], hadron
electromagnetic mass splittings have been estimated using different theoretical models. These
estimates are marginally compatible with our results (within ⇠ 1.5 standard deviations) but agree
qualitatively. Our result for the QCD splitting of the Nucleon is in good agreement with the one of
[Beane et al., 2007], which was done with lattice simulations involving QCD only. Another lattice
QCD plus quenched QED determination of the nucleon splitting is obtained in [Blum et al., 2010].
Their results essentially agree with ours but feature a rough estimate of the systematic errors
and finite volume effects. In [de Divitiis et al., 2011], �

QCD

MN is determined with an original
method: instead of simulating directly the up-down mass difference, the computation of the split-
ting is made by inserting in the correlation function the relevant isospin breaking operators. Their
result for the nucleon QCD splitting is in agreement with the one presented here, but it needs as
an external input the QCD part of the kaon splitting whose determination we significantly improve
here (cf. subsection 4.4.2). In [Horsley et al., 2012], the QCD part of the octet baryon splittings
is determined using a SU(3) flavor breaking expansion, with coefficients fitted to lattice QCD
simulations. Their results are roughly compatible with ours, but rely on the badly known relative
correction " to Dashen’s theorem (cf. subsection 4.4.2). Finally, let us cite the recent analytic work
[Walker-Loud et al., 2012] in which the electromagnetic part of the nucleon splitting is determined
using Cottingham’s formula (through a method similar to the one used in [Gasser and Leutwyler,
1982]), and their result is compatible with our determination. All the results of the previously
cited papers are summarized in table 4.5. Our work is the first to propose a determination of
the ⌃ and ⌅ baryon mass splittings. Moreover, it is the first theoretical determination of these
three splittings from first principles, with all source of error taken into account and with physical
inputs coming only from experiment. As a conclusion, we summarized all our results concerning
hadronic mass splittings in figure 4.20.
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Figure 4.20: Summary of all our results about isospin mass splittings. The kaon total splitting is
colored in black because it was used as an input to fix the light quark mass difference.

PhD A. Portelli, CPT Marseille 2012 (BMW) ΔMN=Mp-Mn  



Related topics: sigma terms 
Baryon scalar form factor at zero momentum transfert 
Of special interest is the Nucleon case: key obervable in the direct detection of dark matter   

20 Termes σ

Sigma term of a baryon is the is its scalar form factor in the limit of zero momentum tranfert.
It is then defined for each quark flavour

σB,q = mq〈B | q̄q | B〉

Of particular interest is the Nucleon

• Nucleon πN sigma term

σπN = ml〈N | ūu + d̄d | N〉 ml =
mu + md

2
(129)

• Nucleon strange sigma term
σs = ms〈N | s̄s | N〉 (130)

• Strange content of N

y =
2〈N | s̄s | N〉

〈N | ūu + d̄d | N〉
(131)

82

They can be computed : 
 
- As matrix elements ("direct")  ...  
  but disconnected contributions 

20 Termes σ

Sigma term of a baryon is the is its scalar form factor in the limit of zero momentum tranfert.
It is then defined for each quark flavour

σB,q = mq〈B | q̄q | B〉

Of particular interest is the Nucleon

• Nucleon πN sigma term
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• Nucleon strange sigma term
σs = ms〈N | s̄s | N〉 (130)

• Strange content of N

y =
2〈N | s̄s | N〉

〈N | ūu + d̄d | N〉
= 2

mlσs

msσπN
(131)

• Other
σ0 = ml〈N | ūu + d̄d − 2s̄s | N〉

20.1 Computing the N sigma term

It can be obtained as a matrix element or in the M(m2
π) dependence

σπN = m2
π

∂M

∂m2
π

= ml
∂M

∂ml

σs = ms
∂M

∂ms

82
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σ0 = ml〈N | ūu + d̄d − 2s̄s | N〉

20.1 Computing the N sigma term

It can be obtained as a matrix element or in the M(m2
π) dependence

σπN = m2
π

∂M

∂m2
π

= ml
∂M

∂ml

σs = ms
∂M

∂ms

82

For the strange and charm content of the nucleon only disconnected dia-
grams contribute to the three-point correlator, while for the light quark con-
tent both kinds of fermionic diagrams matter. The connected contributions to
〈N(p)|Ol|N(p)〉 have been evaluated using standard techniques for three-point
functions (“sequential inversions through the sink”). In this method one needs
to fix the sink-to-source separation τ = t− tsrc and we choose, as in ref. [40],
τ = 12a corresponding in physical units to a separation of τ ≈ 1 fm.

Since, using discrete symmetries and anti-periodic boundary conditions in the
time direction for the quark fields, one finds

C+
N,2pt(τ) = −C−

N,2pt(T − τ) (23)

C+,f
N,3pt(τ, τop) = −C−,f

N,3pt(T − τ, T − τop) , (24)

where T denotes the lattice time extent, in order to increase the signal over
noise ratio we have averaged contributions related by the symmetry rela-
tions (23) and (24). In addition, we have carried out Dirac matrix inversions
at a number (denoted by Nsrc in the following) of randomly chosen source
points per gauge configuration, with the goal of better exploiting the gauge
field information contained in each configuration.

tsrctsrc

top

t

(a)

tsrc

top

t

(b)

Fig. 2. Connected (left) and the disconnected (right) graphs arising from the Wick
contractions of the 3-point function.

An important issue to be discussed is renormalization of the correlators in-
troduced in sect. 2.3. The technical arguments are given in Appendix A. We
summarize here the conclusions. After having subtracted the mixing with the
identity in the correlation function (see Eq. (12)), the operator Ol, Os and Oc

do not mix among each other. Since also the bare quark mass µf renormalizes
multiplicatively with a renormalization constant that is precisely the inverse of
the one occurring in the renormalization of Of , the lattice quantities µfgSf

, for
f = l, s, c, yield O(a) improved renormalization group invariant (RGI) sigma

10

- As derivatives of the baryon masses (Feynman-Hellman Th;) 



Significant differences remain in the “sigma term”  σπN (coef c(1)
X in MX)  

BMW       σπN=39(4) (+18)(-7)    MeV     Durr et al.  PRD85 (2012) 
ETMC     σπN=66.7 +/- 1.3  MeV      Alexandrou et al. PRD78 (2008) 014509  

But experimentally is not much better, say equally bad….  45+/-8 and…. 64+/-7 MeV  (!!!???) 

Concerning the N strange content  yN  

BMW        FH method  yN=0.20(7) (+13)(-17)   compatible with 0 !!!  

PACS-CS  σπN=45 +/- 6    MeV          an. by Shanahan et al, PRD87 (2013) 0745034  

PACS-CS   yN=0.04 +/- 0.01       P.E. Shanahan et al, PRD87 (2013) 0745034  
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20.2 Results

Models

1. Gasser and Leutwyler, Phys. Rep. 87, 77 (1982)

σπN = 33 MeV

y = 0.2 Zweig rule + largeNc

82

MODELS 
Gasser Leutwiller χpT LO + y=0.2 + ms/m=25 
Higer order corrections + y=0.2  
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σπN = 33 MeV

y = 0.2 Zweig rule + largeNc

2. Higher order corrections
σπN = 45 MeV

82

From πN scatt data + new χpT method (Δ) 
Alarcon et al, PRD85 (2012) 051503   
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20.2 Results

Models

1. Gasser and Leutwyler, Phys. Rep. 87, 77 (1982)

σπN = 33 MeV

y = 0.2 Zweig rule + largeNc

2. Higher order corrections
σπN = 45 MeV

3. J.M. Alarcon, J. Martin Camalich, J.A. Oller, PRD85 (2012) 051503

σπN = 59(7) MeV
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Oller and Marc defines like

σπN =
ml

2MN
〈N | ūu + d̄d | N〉 ml =

mu + md

2

This is related to the normalisation condition < NN >= 2MN

• Nucleon strange sigma term
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• Other
σ0 = ml〈N | ūu + d̄d − 2s̄s | N〉

One has
y = 1 −

σ0

σπN

If no s in N, σ0 = σπN and y=0 !
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2. Higher order corrections
σπN = 45 MeV

3. J.M. Alarcon, J. Martin Camalich, J.A. Oller, PRD85 (2012) 051503

σπN = 59(7) MeV

For the value of the sigma term obtained in the present work, this relation leads to a contribution of the
strange quark to the nucleon mass of several hundreds of MeV.

yN = 0.02(13)(10)

82

Furthermore, when ETMC results are analyzed by Adelaide method one finds  

 σπN=46.5 +/- 1.2 MeV  (Th. Thomas, P. Shanahan, R. Young, Private Communication) 



I. Excited states 



Excited states 
The situation is much less clear… 
The main problem is the first radial excitation of the 1/2+ baryon octet (N,Λ,Σ,Ξ)  
Experimentally it lies below the first negative parity excitation (1/2-, 3/2-)  

32 STUDY OF LIGHT BARYONS IN THE THREE-QUARK. . .

E (GeVj (5.8)

IO— Among two-body observables the Coulomb energy, calcu-
lated by perturbation, is of special importance,

0 4

Denoting

(1+3r,' )(1+37, )
l (j IJ

(5.9)

0.5—
(5.10)

8=% % T,

one can show that
2

Ec= [18(A B)Tz +(6A 3B)Tz——2 A] . (5.11)
I/2+ 3/2+ 5/2+ 7/2+ l/2 3/2 5t'2

FIG. 1. Comparison between an exact treatment (solid line)
and an approximate one using a harmonic-oscillator basis
(dashed line) for the nucleon spectrum ( T = 2 ). The HO basis
contains states up to four quanta and uses a size parameter
b=0.66 fm. All levels up to two quanta are reported.

parity states; the differences with the exact calculations
are more pronounced for low values of L (L=0).
Nevertheless the overall agreement is remarkable. Con-
cerning the energies, the HO approximation is certainly
meaningful. One can now ask the question: Does this va-
lidity remain for other observables? To answer this ques-
tion we select one-body and two-body observables.
Among the one-body observables we calculate the mass
square radius (R ) with

The numerical values of these quantities, calculated both
with the HO basis (N=4 and b2) and with exact Faddeev
formalism, are reported in Table I for the two isospin
components T, = —,

' (proton) and T,=——,
' (neutron) of

the nucleon. It is clear that for one-body physical quanti-
ties ((R ), (R, ), ply~) the harmonic-oscillator ap-
proximation is a really good one, while the discrepancy on
Coulomb energy is more pronounced [curiously the differ-
ence Ec(p) Ec(n) is a—lso well reproduced].
Having in mind that the correlations between two parti-

cles in the cluster may be a crucial test, we introduce the
correlation function p(xo) which gives the probability per
volume unit to find two particles separated by the dis-
tance xo, independently of their direction. More precise-
ly,

10
3

R = gm(r; —R)
3gm;, (5.3)

&R ') =—,
' &e [y,'( e) . (5.4)

We also study the charge square radius (R, ), where
3

R, = pe;(r; —R) (5.5)

then

(R, )=—(4'
~
( I +3r,')y)

~

'll )6
(5.6)

which can be recast, through the Lande theorem, in the
form (R, ) =A +T,B. Another interesting quantity is
the magnetic moment in units of the quark magneton, L I

0.8 0.4 0.6 0.8 1.0 1.8 1.4
x(fm)

3

P/P& ——6 + z I,'+sr,' 1+3w,'
i=1

(5.7)

which, for the ground state I.=0, S=—,, takes the form

FIG 2 Correlation function as defined by (5 12) calculated
in an exact treatment (solid curve) and in an approximate one
using a harmonic-oscillator basis (dashed curve). The two most
important channels o.=t=0 and o.=t=1 are plotted.

Experimental Quark Models (NR) 

Silvestre-Brac et al Phys Rev D32 (1985) 

Lattice (quenched) 

6
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Some progress in the QM side  

I. Introducing 3-q forces in the NRCQM    

Good Ropers for N, Λ Σ but miss Λ negative parities 

334 
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Fig. 1. Relative spectrum for calculated and observed baryon 
resonances for the N, A, A,  s  ~ and g? sectors. Positive- 
parity levels are displayed on the left-hand side, while the 
negative-parity levels appear on the right-hand side. The 
calculated values are obtained through a Faddeev treatment 
including three-body forces (as explained in the text) and are 
referred to by solid lines. The experimental data are shown 
through their full width, while uncertain levels are denoted by 
dashed lines 

Table 3. The sum of the potential and kinetic energies for some of the lower energy states in the N and A sectors calculated in different 
approximations on the interactions. Notation is the same as in Table 1, but the approximations are given in a different order. The root 
mean square radii are also given as a further information 

I II III IV 

Vconf~-V(7o.~-Vcoul-~V (3) Vconf--V~G~-Vcout Vconf ~- Vary Vcon f 

N( 89 + ) E (MeV) - 161 101 629 671 
(g.s.) <r2> 3 (fm) 0.38 0.58 0.82 0.86 

N * (1+) E(MeV) 333 493 892 925 
(Roper) (r2> 3 (fro) 0.79 0.95 1.18 1.12 

N *( 89 E (MeV) 393 415 794 819 
<r2) 7 (fm) 0.78 0.81 1.00 1.04 

A (3 +) E (MeV) 116 240 707 671 
(g.s.) (r2) 3 (fm) 0.51 0.65 0.90 0.85 

A (~ +) E(MeV) 483 582 953 925 
(Roper) (r2) 3 (fm) 0.90 1.03 1.24 1.22 

B. Desplanques et al, Z. Phys. A343 (1992) 
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Table 3. The sum of the potential and kinetic energies for some of the lower energy states in the N and A sectors calculated in different 
approximations on the interactions. Notation is the same as in Table 1, but the approximations are given in a different order. The root 
mean square radii are also given as a further information 

I II III IV 

Vconf~-V(7o.~-Vcoul-~V (3) Vconf--V~G~-Vcout Vconf ~- Vary Vcon f 

N( 89 + ) E (MeV) - 161 101 629 671 
(g.s.) <r2> 3 (fm) 0.38 0.58 0.82 0.86 

N * (1+) E(MeV) 333 493 892 925 
(Roper) (r2> 3 (fro) 0.79 0.95 1.18 1.12 

N *( 89 E (MeV) 393 415 794 819 
<r2) 7 (fm) 0.78 0.81 1.00 1.04 

A (3 +) E (MeV) 116 240 707 671 
(g.s.) (r2) 3 (fm) 0.51 0.65 0.90 0.85 

A (~ +) E(MeV) 483 582 953 925 
(Roper) (r2) 3 (fm) 0.90 1.03 1.24 1.22 

Non static MIT bag model  
 
 

Ad-hoc, tautological,…  but still ! 

I’. Roper as N « breathing-mode »     P. Guichon PLB 164 (1985) 361 



Graz Relativistic Constituent Quark Model (psGBE 98, EGBE 05)  
Key: Introduce 0- exchange between quarks to account for broken chiral dynamics  

I. Deeply modifying the qq dynamics   

parity 1
2

2- 32 2 states L~1670!-L~1690! and the 1
2

2 state
S~1750!, respectively. In the L spectrum, at the same time,
the negative-parity 1

2
2- 32 2 states L~1405!-L~1520! remain

the lowest excitations above the L ground state. By correct
level orderings of the positive- and negative-parity states a
long-standing problem of baryon spectroscopy is resolved.
At this stage, only one state is not reproduced in agreement

or close to experiment, the flavor singlet L~1405!; we men-
tion a possible reason below.
The remarkable successes of the GBE quark-quark inter-

action of Eqs. ~4! and ~7! are, of course, brought about by the
particular symmetry introduced through the spin-flavor op-
erators s

W i•s

W jlW i
F•l

W
j
F and by the short-range part of the inter-

action with a proper sign @3,4#. This makes the GBE poten-
tial just adequate for the level structures found in
experiment, and thus a unified description of all light- and
strange-baryon spectra is possible, even though our model in
the present simplest version involves only a handful of free
parameters. The action of the chiral potential V

x

on the en-
ergy levels becomes especially transparent when the cou-
pling constant is gradually increased ~see Fig. 2!. Starting out
from the case with confinement only, one observes that with
increasing coupling the inversion of the lowest positive- and
negative-parity states N(1440) and N(1535)-N(1520) in the
N spectrum is achieved. At the same time the level crossing
of the corresponding states L~1600! and L~1405!-L~1520! in
the L spectrum is avoided, just as demanded by phenom-
enology.

FIG. 1. Energy levels of the lowest light- and strange-baryon
states with total angular momentum and parity JP. The nucleon
ground state is 939 MeV. The shadowed boxes represent the experi-
mental values with their uncertainties. The D, S

*, and J

* ground-
state levels practically fall into their rather tight experimental boxes.

FIG. 2. Level shifts as a function of the strength of the
Goldstone-boson-exchange interaction. Solid and dashed lines cor-
respond to positive- and negative-parity states, respectively.

UNIFIED DESCRIPTION OF LIGHT- AND STRANGE- . . . PHYSICAL REVIEW D 58 094030

094030-3

Achieved a consistent description of Baryon in RCQM  

RCQM

Multiplets

Nucleon FFs

Flavor contr

Hyperons

Axial FFs

Vertex FFs

Summary

u, d , s Baryon Spectroscopy

Excitation spectra of the GBE RCQM:

L. Glozmann, W. Plessas, Varga, Wagenbraunn, PRD58 (1998) 
L. Glozmann, Papp, W. Plessas, Varga, WagenbraunnPRC57 (1998) 
K. Glantschnig, R. Kainhofer, W. Plessasa, B. Sengl, and R.F. Wagenbrunn, Eur. Phys. JA23 (2005) 507"

Some disagrement in the Λ and Σ first negative parity excitations 



The model provides an acceptable agreement in a wide set of observables 
…although at the price of increasing the number of « parameters while LQCD remains 2-3 

K. Glantschnig et al.: Extended GBE constituent-quark model 511

Spin-orbit component:

V LS
γ (r) = −

(
gV

γ

)2

4π

(
3 + 4

gT
γ

gV
γ

)
1

2mimj

×
[
µ3

γ

(
1

µ2
γr2

+
1

µ3
γr3

)
e−µγr

−Λ3
γ

(
1

Λ2
γr2

+
1

Λ3
γr3

)
e−Λγr−

Λ2
γ − µ2

γ

2r
e−Λγr

]
.

(13)

The notation is the same as before, only we encounter
different vector and tensor coupling constants gV

γ and gT
γ ,

respectively.
In principle, the vector meson exchange (like the sub-

sequent scalar meson exchange) also produces a quadratic
spin-orbit interaction. Since it is of higher order in the
inverse quark masses, it is expected to be of minor im-
portance. Therefore it is neglected here (and below in the
scalar meson exchange).

4.4 Scalar part

The scalar meson-exchange interaction (γ = a0, κ, f0,
σ) produces only central and spin-orbit forces. The corre-
sponding potential is

Vγ (i, j) = V C
γ (rij) + V LS

γ (rij)Lij · Sij . (14)

The dependences of V C and V LS on the interquark sepa-
ration rij = r are given as follows:

Central component:

V C
γ (r) = −

g2
γ

4π

[
e−µγr

r
−

(
1 +

(
Λ2

γ − µ2
γ

)
r

2Λγ

)
e−Λγr

r

]
;

(15)

Spin-orbit component:

V LS
γ (r) = −

g2
γ

4π
1

2mimj

[
µ3

γ

(
1

µ2
γr2

+
1

µ3
γr3

)
e−µγr

− Λ3
γ

(
1

Λ2
γr2

+
1

Λ3
γr3

)
e−Λγr −

Λ2
γ − µ2

γ

2r
e−Λγr

]
.

(16)

The quadratic spin-orbit component is neglected (see
the discussion in the previous subsection).

5 Parameterization

In this section we present two parameterizations of our
extended GBE CQM. One parameterization leaves out
spin-orbit forces. The other one takes into account all rel-
evant force components produced by the different meson
exchanges, and thus includes also spin-orbit forces.

Table 1. Predetermined parameters of the extended GBE
CQM (for both cases, without and with spin-orbit forces). For
additional explanations see the text.

mu = 340 MeV md = 340 MeV ms = 507 MeV

µπ = 139 MeV µK = 494 MeV µη = 547 MeV
µη′ = 958 MeV µρ = 770 MeV µK∗ = 892 MeV
µω8 = 947 MeV µω0 = 869 MeV µσ = 680 MeV
µa0 = 980 MeV µκ = 980 MeV µf0 = 980 MeV

g2
ps,8/4π = 0.67 (gV

v,8)
2/4π = 0.55 (gV

v,0)
2/4π = 1.107

(gps,0/gps,8)
2 = 1 (gT

v,8)
2/4π = 0.16 (gT

v,0)
2/4π = 0.0058

g2
s /4π = 0.67

5.1 Extended GBE CQM without spin-orbit forces

Usually it is expected that spin-orbit forces play only a
minor role in hadron spectroscopy. Therefore they are left
out in most CQMs. In extending the GBE CQM we may,
in a first step, try this option too and set V LS

γ (rij) = 0 in
eqs. (9) and (14).

In the parameterization of the various potential parts
the constituent-quark masses mi are set to the usual val-
ues adopted in CQMs. The meson masses are taken from
the compilation of the Particle Data Group [24]. The mix-
ing of the η0 and η8 mesons, whose mixing angle is −11.5◦
(as determined from the squares of the meson masses), was
neglected in the previous pseudoscalar GBE CQM because
the mixing effect had been found to be unimportant. We
maintained this attitude in the parameterization of the
extended models. The mixing of the vector ω0 and ω8

mesons, however, is much larger, namely 38.7◦. Therefore,
we took care of this mixing and assumed it to be ideal, i.e.
with a mixing angle of 35.3◦. No mixing was foreseen for
the scalar mesons. We remark, however, that all of these
assumptions for the meson masses are not very relevant.
They have to be seen in the light of the values of the
corresponding cut-off parameters Λ determined in the fit.

For the quark-meson coupling constants one may
derive suitable estimates from the phenomenologically
known π-N , ρ-N , and ω-N coupling constants using the
Goldberger-Treiman relation. This procedure should lead
to reasonable magnitudes at least for the coupling con-
stants g2

ps/4π of pseudoscalar meson exchange as well as
the vector and tensor coupling constants (gV

v )2/4π and
(gT

v )2/4π, respectively, of vector meson exchange (for de-
tails see ref. [28]). For the pseudoscalar coupling constants
we have made the additional assumption that there is no
difference between the octet and singlet exchanges, i.e.,
g2
ps,8/4π = g2

ps,0/4π. For the scalar meson exchange we
have assumed that the quark-meson coupling constant
g2
s /4π is of equal magnitude as in the pseudoscalar case.

The numerical values of all the predetermined param-
eters are summarized in table 1.

In addition to the predetermined parameters, the ex-
tended GBE CQM (without spin-orbit forces) relies on
seven fit parameters. Two of them concern the confine-
ment interaction: the strength C of the linear potential
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Table 2. Free parameters of the extended GBE CQM without
spin-orbit forces.

C = 1.935 fm−2 V0 = −336 MeV

Λπ = 834 MeV Λρ = 1145 MeV Λσ = 1513 MeV
ΛK = 1420 MeV Λη′ = 1400 MeV

and the constant V0 fixing the ground state of the spec-
trum. As indicated above, the value of C is found rather
close to the magnitude of the string tension of QCD (of
approximately 0.1 GeV2). We remark that such a (strong)
value for the strength of the linear confinement potential
is compatible in a CQM only if the relativistic expression
for the kinetic-energy operator is used. Otherwise, in a
purely nonrelativistic CQM, this strength would have to
be chosen unrealistically small [29].

The rest of the free parameters is furnished by the
cut offs inherent in the meson-exchange potentials. They
stem from the finite extension of the quark-meson vertices
according to eq. (4). The various Λγ ’s are expected to
be different for the different meson exchanges. Instead of
varying them freely, we prescribed a linear dependence of
the cut-off parameters on the specific meson masses and
adjusted only the parameters Λπ, Λρ, and Λσ occurring
therein by a fit to the baryon spectra. Specifically, the
different scaling prescriptions read:

Pseudoscalar meson exchange:

Λγ = Λπ + (µγ − µπ) , γ = π, η. (17)

Vector meson exchange:

Λγ = Λρ + (µγ − µρ) , γ = ρ, K∗, ω8, ω0. (18)

Scalar meson exchange:

Λγ = Λσ + (µγ − µσ) , γ = f0, a0, κ, σ. (19)

Only ΛK and Λη′ are exempted from this prescription
and are varied independently. This turned out to be fa-
vorable for an optimal description of all the light- and
strange-baryon excitation spectra.

The values of the seven free parameters of the extended
GBE CQM (without spin-orbit forces) are summarized in
table 2.

5.2 Extended GBE CQM with spin-orbit forces

In principle, spin-orbit forces are generated by both the
confinement and the hyperfine interactions. Their net ef-
fect should be small, however, as one does not observe
large level splittings from experiments. Still, we have
aimed at a version of the extended GBE CQM that does
include spin-orbit forces too. They might be relevant in
applications beyond spectroscopy.

Instead of employing the explicit expressions for the
L ·S forces generated by the different meson exchanges in

Table 3. Free parameters of the extended GBE CQM with
spin-orbit forces.

C = 1.935 fm−2 V0 = −336 MeV

Λπ = 834 MeV Λρ = 1145 MeV Λσ = 1513 MeV
ΛK = 1420 MeV Λη′ = 1400 MeV

(gLS)2/4π = 0.8

eqs. (13) and (16), we used a single spin-orbit term

V LS
γ (r) = − (gLS)2

4π
1

2mimj

[
µ3

γ

(
1

µ2
γr2

+
1

µ3
γr3

)
e−µγr

−Λ3
γ

(
1

Λ2
γr2

+
1

Λ3
γr3

)
e−Λγr−

Λ2
γ − µ2

γ

2r
e−Λγr

]
,

(γ = ρ,K∗,ω8,ω0, f0, a0,κ,σ), (20)

with a uniform strength (gLS)2/4π, which is treated as an
open parameter.

The assumption of a spin-orbit force as in eq. (20) is
motivated by the following findings. The spin-orbit com-
ponents in the hyperfine interaction are a-priori deter-
mined from the (vector and scalar) meson exchanges. In
particular, their strengths are fixed by the correspond-
ing quark-meson coupling constants. The spin-orbit forces
from the confinement, however, remain uncertain in any
case, both with respect to their form and strength. In this
regard, one cannot escape to assume an ad hoc spin-orbit
contribution in the parameterization of the quark-quark
interaction. In fact, this problem has been studied in the
work [28] by keeping the spin-orbit interactions of the me-
son exchanges from eqs. (13) and (16) fixed and varying
the strength of the additional spin-orbit force from the
confinement of the form as in eq. (20). One arrives at a
certain combination of spin-orbit forces at the cost of ad-
ditional open parameters. It was found that there is essen-
tially no difference of such a version of an extended GBE
CQM from the one presented here. Therefore, in our study
of the role of spin-orbit forces we contented ourselves with
the form as specified in eq. (20).

All the other interactions are kept the same as in the
case of the extended GBE CQM of the previous subsec-
tion. Also the values of the predetermined parameters are
maintained as given in table 1.

The extended GBE CQM with spin-orbit forces now
relies on eight open parameters, two for the confinement
and six for the hyperfine interaction. While the confine-
ment parameters C and V0 as well as the meson cut-offs
Λ assume the same values as before (in the case without
spin-orbit forces), one has an additional open parameter,
namely, the strength (gLS)2/4π of the overall spin-orbit
force (20). The values of the free parameters of the ex-
tended GBE CQM with spin-orbit forces are summarized
in table 3.



Most of the disagreements in CQM can be explained by threshold effects 
N* (1/2+,1440) as σN 
Λ   (1/2-, 1405) as Kbar N 
 

« si non è vero è bene trovato » 
 
… and give us a good hint of what happens in the Lattice results 
 

III. Including thresholds effects   

The main point is that coupling a resonance state to a scattering meson-baryon 
chanel can significantly decrease its energy. 

P. Gonzalez et al, PRC77 (2008) 065213  



Some hope (mπ=180 MeV, quenched) … very much in the spirit of Graz model 

In LQCD the situation is quite confuse…. 

Unfortunately not confimed ...  

Mathur, Chen,Dong, et al, Phys Lett B 605 (2005) 137  

Bern-Graz-Regensburg Collaboration, 
Lang, Erice Lectures 2007 , T. Burch et al., Phys. Rev. D 74 (2006) 014504 



There is no clear evidence from LQCD that Roper is below the negative parity states 

Calculations are very difficult since:  
  (i)  one must disantagle ground and excited contributions in a sum of exponentials (instable fit !)   
  (ii) states dominated by decay (N*èNπ, Nππ,..)  “physical π” are essential to dont inhibit scattering states  !  

J. Bulava, Edwards, Morningstar et al, PRD 82, 014507 (2010)  nf=2+1 but mπ>390 MeV 

FIG. 4 (color online). Spectra for isospin 1
2 (nucleon family) at three values of m! are compared with experimental spectra. Plots in

the first row show G1g and G1u lattice irreps, plots in the second row show Hg and Hu irreps and plots in the third row show G2g and

G2u irreps. Columns labeled by m! ¼ 392, 438, and 521 show lattice spectra at those values of m!. Two, three and four-star
experimental resonances are shown in columns labeled by their JP values. Each JP value listed has a subduction to the lattice irrep
shown. Each box for an experimental resonance has height equal to the full decay width and an inner box (color aqua) showing the
uncertainty in the Breit-Wigner energy. Triangles to the right of lattice spectra point to the threshold for scattering states at that value of
m!.

NUCLEON, !, AND " EXCITED STATE . . . PHYSICAL REVIEW D 82, 014507 (2010)

014507-9

(i) sems to be solved by recently developed methods (matrix correlator functions and distillation) 
     M. Peardon et al., QCD, PRD 80, 054506 (2009) 
(ii) remains a serious drawback  

Proper coupling to decay channels is mandatory 

mπ mπ 
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!
3 ¼ Nð1Þ
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! ; Nð3Þ

! with Nv ¼ 32;

O!
4 ;O

!
5 ;O

!
6 ¼ Nð1Þ

! ; Nð2Þ
! ; Nð3Þ

! with Nv ¼ 64;

O!
7 ;O

!
8 ;O

!
9 ¼ Oð1Þ

N!; O
ð2Þ
N!; O

ð3Þ
N! with Nv ¼ 32;

(25)

with the definition from (4) and (6).
Let us first consider results for the subset of 3-quark

interpolatorsO!
1 -O

!
6 . It turns out that inclusion of the type

Nð3Þ
! does not improve the quality of the diagonalization

results. We therefore use only the subset
ðO!

1 ;O
!
2 ;O

!
4 ;O

!
5 Þ. We reproduce the usual (see, e.g.,

Refs. [4,5]) pattern of energy levels (see left-hand plot of
Fig. 3), which have been assigned to the two N% reso-
nances. However, as has been observed in Ref. [46], to-
wards smaller pion masses the lower level moves close to
the expected threshold and thus lies unexpectedly low if
compared to the N%ð1535Þ. The situation is shown in Fig. 4
(middle). The energy levels have the values 1.359(43) GeV
(exponential fit, fit range 6–10) and 1.709(29) GeV
(fit range 4–9).

This picture changes significantly when one includes the
N! interpolators in the correlation matrix. The right-hand
plot of Fig. 3 shows the effective energy levels when using
operators O!

1 , O
!
2 , O

!
4 , O

!
5 , O

!
7 , O

!
8 , O

!
9 in the analysis.

The exponential fits to the corresponding eigenvalues and
the resulting energy levels are listed in Table II.

Figure 4 (right) demonstrates the difference to the pre-
vious case with only 3-quark interpolators. The lowest
level now lies slightly below threshold, a feature typical
for attractive s wave [11,12] and a finite volume artifact.
This agrees with the behavior discussed in Sec. II E. The
two next-higher levels are now close to values lying
approximately 130 MeV above the physical resonance
positions of N%ð1535Þ and N%ð1650Þ, similar to the situ-
ation for the nucleon. Comparison with Fig. 1, where a
single elastic resonance parametrization has been used,

shows excellent agreement for the lowest two energy
levels.
The eigenvectors are fingerprints of the states and one

should have a stable composition across the fit range in
order to be sure to identify the same eigenstate. Figure 5
shows the eigenvector components of the three lowest
eigenstates. The eigenvectors have unit norm. The absolute
normalization of the 5-quark operators compared to the
3-quark ones is unclear. However, one finds that the ON!

contribution to the ground state is significantly larger than
to the higher levels. Interpolators of type Nð1Þ

! contribute
importantly to the lowest eigenstate and dominate the third
state, whereas the interpolators of type Nð2Þ

! are more
important for the second state.
In contrast, the effective energy levels of the pure

3-quark correlations system show more fluctuation.
Comparing with the full N! system results one gets the
impression that the two lowest states of the 3-quark system
interpolate between the three lowest states of the complete
system.
The lowest energy level of the two particle system lies

below threshold and the corresponding value of "0 may be
related to the scattering length. Table II gives also the
values of "0 from (20) due to the Lüscher analysis and
the resulting values of the phase shift, assuming elasticity.
The second energy level lies close to the point where the
phase shift crosses !=2 (this value is included within the
error bars). This closeness is pure chance: for slightly
larger lattices this would not have been the case
(cf. Fig. 1). As discussed, the kinematical situation (pion
mass and lattice size) allows the assumption to be in the
elastic domain and thus one is tempted to assume validity
of (22). The zero of the line connecting the values of "0 at
the two lowest energy levels gives the resonance position
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FIG. 3 (color online). Left: effective energy values for the case
without N! contribution. Right: including N! interpolators. The
horizontal broken line indicates the threshold value mN þm!.
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FIG. 4 (color online). Comparison of the energy levels. Left:
physical mass values (experiment). Middle: result when using
only 3-quark interpolators. Right: result when pion-nucleon
interpolators are included. The dashed lines indicate the scatter-
ing thresholds.
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Scattering in the !N negative parity channel in lattice QCD
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We study the coupled !N system (negative parity, isospin 1
2 ) based on a lattice QCD simulation for

nf ¼ 2 mass degenerate light quarks. Both standard 3-quark baryon operators as well as meson-baryon

(4þ 1)-quark operators are included. This is an exploratory study for just one lattice size and lattice

spacing and at a pion mass of 266 MeV. Using the distillation method and variational analysis we

determine energy levels of the lowest eigenstates. Comparison with the results of simple 3-quark

correlation studies exhibits drastic differences and a new level appears. A clearer picture of the negative

parity nucleon spectrum emerges. For the parameters of the simulation we may assume elastic s-wave
scattering and can derive values of the phase shift.

DOI: 10.1103/PhysRevD.87.054502 PACS numbers: 11.15.Ha, 12.38.Gc

I. INTRODUCTION

Even if we consider only strong interactions almost all
hadrons are unstable. Calculations in lattice quantum chro-
modynamics (QCD) should therefore take into account the
resonant nature of these states and the coupled decay
channels. The bulk of lattice studies rely on correlation
functions for simple !qq- or qqq-type operators for mesons
or baryons, respectively. Formally one would expect that in
the full quantum field theory with dynamical quarks these
simple meson or baryon operators should (via dynamical
vacuum loops) couple to meson-meson or meson-baryon
states. It was found that such intermediate channels seem
to be coupling tooweak to be observed (see, e.g., Refs. [1–7]
for baryon correlation studies). Therefore one needs to
include explicitly hadron-hadron operators in the set of
interpolators, as has been demonstrated in meson reso-
nance studies [8–14].

The interplay between resonance levels and hadron-
hadron states has been discussed in Refs. [15–18], where
the resulting energy levels for finite spatial volume were
related to the continuum scattering phase shift in the elastic
region. Comparing the energy levels of a noninteracting
hadron-hadron state with those in the case of interactions
one finds a significant level shift (‘‘avoided level cross-
ing’’) in the energy region of the resonance. The effect of
such coupled channels depends on the system parameters.
For small volumes and unphysical large quark masses the
two-hadron energy levels may lie high above the observed
resonance levels or—for narrow resonances—outside the
influence region of the resonance.

Often it is technically not possible (e.g., due to a small
volume) to determine more than a few of the lowest energy
levels below the elastic threshold. In the elastic scattering
region each energy level corresponds to one value of the
phase shift and the resonance region then cannot be

mapped out sufficiently well. One the other hand, each
change of volume or other parameters requires a com-
pletely new simulation sequence (i.e., generating configu-
rations with dynamical fermions, quark propagators, etc.)
Studying interpolators in moving frames [19–23] allows us
to obtain further values on the same configurations.
Unfortunately, for coupled channels with two hadrons of
different mass, there can be mixing between different
partial waves, complicating the situation. Another compli-
cation is the opening of inelastic channels.
Starting from continuum models for a scattering process

based on phenomenologically determined parameters, one
can also derive the energy levels on finite volume lattices
[24–27]. Coupled channel potential models or unitarized
chiral perturbation theory motivated models in that way
allow us to compare with lattice results. Alternative meth-
ods to identify resonance parameters have been discussed
in that context [24,28,29].
A particularly interesting case is the negative parity

nucleon channel. There we have two low lying resonances
N#ð1535Þ and N#ð1650Þ which couple to N! in s wave.
Above the 10% level there are also further inelastic decays
N#ð1535Þ ! N" and N#ð1650Þ ! N", "K. So far lattice
simulations of this channel that have determined ground
state energy levels and further excitations included only
3-quark interpolators [4–7]. In these studies two low lying
energy levels have been identified and assigned to the two
negative parity resonances. However, the lower of the two
levels showed a tendency to lie below the N#ð1535Þ.
In order to clarify the situation we study here for the first

time the coupled system of 3-quark nucleon interpolators
and pion-nucleon interpolators in the negative parity chan-
nel. The calculation requires the computation of many
more correlation graphs than before, including the notori-
ously demanding backtracking quark line contributions.
We therefore use the distillation method [30] for determin-
ing the cross correlation matrix for up to nine interpolators.
We use gauge configurations with nf ¼ 2 mass degenerate
dynamical quarks (of improved Wilson type) with a pion
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TABLE XXI: The final glueball spectrum in physical units.
In column 2, the first error is the statistical uncertainty com-
ing from the continuum extrapolation, the second one is the
1% uncertainty resulting from the approximate anisotropy.
In column 3, the first error comes from the combined uncer-
tainty of r0MG, the second from the uncertainty of r−1

0 =
410(20) MeV

JPC r0MG MG (MeV)
0++ 4.16(11)(4) 1710(50)(80)
2++ 5.83(5)(6) 2390(30)(120)
0−+ 6.25(6)(6) 2560(35)(120)
1+− 7.27(4)(7) 2980(30)(140)
2−+ 7.42(7)(7) 3040(40)(150)
3+− 8.79(3)(9) 3600(40)(170)
3++ 8.94(6)(9) 3670(50)(180)
1−− 9.34(4)(9) 3830(40)(190)
2−− 9.77(4)(10) 4010(45)(200)
3−− 10.25(4))(10) 4200(45)(200)
2+− 10.32(7)(10) 4230(50)(200)
0+− 11.66(7)(12) 4780(60)(230)

In the tensor channel, the glueball matrix element is
extrapolated to 1.0±0.2 GeV3 in the continuum, which is
the average of results of E and T2 channels. In the calcu-
lation, it is found that in the lattice spacing range we use,
the glueball mass and matrix elements are approximately
independent of the lattice spacing, this implies that the
lattice artifacts might be neglected here. If the renor-
malization constant ZT ≈ 0.52(15) of the tensor operator
does not change much in the range of lattice spacing and
applies to all the β values in this work, the renormalized
matrix element of tensor operator is 0.52 ± 0.19 GeV3,
which is in agreement with the prediction 0.35 GeV3 from
the tensor dominance model [17] and QCD sum rule [18]
for the tensor mass around 2.2 GeV.

VII. Conclusion

The glueball mass spectrum and glueball-to-vacuum
matrix elements are calculated on anisotropic lattices in
this work. The calculations are carried out at five lattice
spacings as’s which range from 0.22 fm to 0.10 fm. Due
to the implementation of the improved gauge action and
improved gluonic local operators, the lattice artifacts are
highly reduced. The finite volume effects are carefully
studied with the result that they can be neglected on the
lattices we used in this work.

As to the glueball spectrum, we have carried out cal-
culations similar to the previous work [4] on much larger
and finer lattices, so that the liability of the continuum
limit extrapolation is reinforced. Our results of the glue-

ball spectrum is summarized in Tab. XXI and Fig. 16.
After the non-perturbative renormalization of the local

gluonic operators, we finally get the matrix elements of
scalar(s), pseudoscalar(p), and tensor operator (t) with
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FIG. 16: The mass spectrum of glueballs in the pure SU(3)
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the results

s = 15.6 ± 3.2 (GeV)3

p = 8.6 ± 1.3 (GeV)3

t = 0.52 ± 0.19 (GeV)3, (62)

where the errors of s and t come mainly from the errors
of the renormalization constants ZS and ZT . The more
precise calculation of ZS and ZT will be carried out in
later work.
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Glueballs: a QCD crucial prediction…. with nothing behind ! 

The more serious calculations in LQCD are pure glue (quenched). 

No one has been clearly experimentally confirmed (hard!)...  

Are quenched LQCD calculations reliable ? 



First « unquenched » results:  nf=2+1, mπ=360 MeV  Gregory et al, JHEP 120 (2012) 170 
Only lowest 0++ consistent with the quenched values  
Others…. at the price of large error bars ! 

J A
1

A
2

E T
1

T
2

0 1 0 0 0 0

1 0 0 0 1 0

2 0 0 1 0 1

3 0 1 0 1 1

4 1 0 1 1 1

Table 3. Subduced representations J # GO of the octahedral group up to J = 4. This table
illustrates the spin content of the irreducible representations of GO in terms of the continuum J .

JPC Mass MeV

Unquenched Quenched

This work M&P Ky Meyer

0�+ 2590(40)(130) 2560(35)(120) 2250(60)(100)

2�+ 3460(320) 3100(30)(150) 3040(40)(150) 2780(50)(130)

0�+ 4490(590) 3640(60)(180) 3370(150)(150)

2�+ 3480(140)(160)

5�+ 3942(160)(180)

0�� (exotic) 5166(1000)

1�� 3850(50)(190) 3830(40)(190) 3240(330)(150)

2�� 4590(740) 3930(40)(190) 4010(45)(200) 3660(130)(170)

2�� 3.740(200)(170)

3�� 4130(90)(200) 4200(45)(200) 4330(260)(200)

1+� 3270(340) 2940(30)(140) 2980(30)(140) 2670(65)(120)

3+� 3850(350) 3550(40)(170) 3600(40)(170) 3270(90)(150)

3+� 3630(140)(160)

2+� (exotic) 4140(50)(200) 4230(50)(200)

0+� (exotic) 5450(830) 4740(70)(230) 4780(60)(230)

5+� 4110(170)(190)

0++ 1795(60) 1730(50)(80) 1710(50)(80) 1475(30)(65)

2++ 2620(50) 2400(25)(120) 2390(30)(120) 2150(30)(100)

0++ 3760(240) 2670(180)(130) 2755(30)(120)

3++ 3690(40)(180) 3670(50)(180) 3385(90)(150)

0++ 3370(100)(150)

0++ 3990(210)(180)

2++ 2880(100)(130)

4++ 3640(90)(160)

6++ 4360(260)(200)

Table 4. Glueball masses with JPC assignments. The column M&P reports results from Morn-
ingstar and Peardon [2] from quenched QCD. The column labelled Ky is the data from Chen et
al. [3]. Meyer’s results are from [25].

– 11 –

Others are missing … 
+ some new states … 



Models: PHYSICAL REVIEW D 77, 114022 (2008) Vincent Mathieu,* Fabien Buisseret,+ and Claude Semay‡ 

by lattice calculations. But no instanton-induced interac-
tion is explicitly taken into account in this work.
A detailed glueball spectrum is given in Table III for

Models A and B. We computed the masses of more states
than those which are currently observed in lattice QCD.
Some of them have a mass greater than 4 GeV; glueball
spectrum in lattice QCD is poorly known above this energy
range. However, there are higher 0þþ and 2þþ states that
lie under this limit with both sets of parameters. Some of
them are seen in Ref. [36] but not in Refs. [2,3]. It should
be interesting to know whether future lattice computations
will confirm or not the existence of these states. We also
point out again that no J ¼ 1 state is present at low energy
as expected from lattice QCD with helicity-1 gluons.
Let us begin by a discussion of the results obtained with

Model A. In this case, the scalar and pseudoscalar glueballs
are compatible with lattice QCD without invoking
instanton-induced interactions. But the situation gets
clearly worse for higher J. First, J ¼ 1 states are present,
which are not observed in lattice QCD. In particular, the
rather light 1#þ glueball seems to be a serious flaw of
Model A since the #þ channel is rather well known from

FIG. 1. Comparison between the lattice QCD data concerning
C ¼ þ glueballs (crosses), the Coulomb gauge results (tri-
angles) [8], and our Model B (circles). Masses are given in
GeV. All lattice data come from Refs. [2,3], except data for 4þþ

and 6þþ states [36] (see 2nd and 3rd columns of Table III).

TABLE III. Available data for C ¼ þ glueball masses from various lattice QCD models and Coulomb gauge QCD (CGQCD),
compared with the results of Models A and B. The glueball mass is given and the corresponding spin/helicity state is detailed in both
cases. Parameters of Table II are used, and all masses are given in GeV.

JPC Lattice Lattice [36] CGQCD [8] Model A Model B

0þþ 1:710$ 0:050$ 0:080 [3] 1:475$ 0:030$ 0:065 1.980 1.655 j1S0i 1.724 jSþ; 0þi
2:670$ 0:180$ 0:130 [2] 2:755$ 0:070$ 0:120 3.260 2.696 j1S0i 2.543 jSþ; 0þi

3:370$ 0:100$ 0:150 3.101 j5D0i 3.234 jSþ; 0þi
3:990$ 0:210$ 0:180 3.496 j1S0i 3.839 jSþ; 0þi

0#þ 2:560$ 0:035$ 0:120 [3] 2:250$ 0:060$ 0:100 2.220 2.500 j3P0i 2.624 jS#; 0#i
3:640$ 0:060$ 0:180 [2] 3:370$ 0:150$ 0:150 3.430 3.305 j3P0i 3.443 jS#; 0#i

1#þ 2.500 j3P1i Forbidden
1þþ 3.101 j5D1i Forbidden
2þþ 2:390$ 0:030$ 0:120 [3] 2:150$ 0:030$ 0:100 2.420 1.655 j5S2i 2.588 jDþ; 2

þi
2:880$ 0:100$ 0:130 3.110 2.696 j5S2i 3.077 jSþ; 2þi

3.101 j1;5D2i 3.325 jDþ; 2
þi

2#þ 3:040$ 0:040$ 0:150 [3] 2:780$ 0:050$ 0:130 3.090 2.500 j3P2i 3.077 jS#; 2#i
3:890$ 0:040$ 0:190 [3] 3.480$ 0:140$ 0:160 4.130 3.304 j3P2i 3.732 jS#; 2#i

3þþ 3:670$ 0:050$ 0:180 [3] 3:385$ 0:090$ 0:150 3.330 3.101 j5D3i 3.254 jD#; 3
þi

4.290 3.783 j5D3i 3.882 jD#; 3
þi

3#þ 3.601 j3F3i Forbidden
4þþ 3:650$ 0:060$ 0:180 [37] 3:640$ 0:090$ 0:160 3.990 3.101 j5D4i 3.768 jDþ; 4

þi
4.280 3.784 j5D4i 3.961 jSþ; 4þi

4.038 j1;5G4i 4.328 jDþ; 4
þi

4#þ 4.270 3.601 j3F4i 3.961 jS#; 4#i
4.980 4.204 j3F4i 4.499 jS#; 4#i

5þþ 4.038 j5G5i 4.207 jD#; 5
þi

5#þ 4.432 j3H5i Forbidden
6þþ 4:360$ 0:260$ 0:200 4.038 j5G6i 4.598 jDþ; 6

þi
4.585 j5G6i 4.708 jSþ; 6þi
4.793 j1;5I6i 5.073 jDþ; 6

þi

VINCENT MATHIEU, FABIEN BUISSERET, AND CLAUDE SEMAY PHYSICAL REVIEW D 77, 114022 (2008)

114022-8

Parameters were adjusted to reproduce (unquenched) LQCD 
results 
 
… go to 1 





Some predictions for charmed-strange baryons …. 

C. Alexandrou et al (ETMC), Phys.Rev. D86 (2012) 114501 
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Particle(PDG) m (GeV) ∆m (GeV)
Σc,av(2.454) 2.494(47) 0.143
Ξ+

cc 3.563(25) 0.397
Λ+

c (2286) 2.229(43) 0.223
Σ∗

c,av(2.520) 2.650(39) 0.147
Ξ∗

cc,av 3.672(42) 0.274
Ωccc 4.702(11) 0.308

TABLE VIII: For each particle listed in the first column we give in the second column its mass at the physical pion mass using
for the chiral extrpoaltion the masses computed at the tuned value of the charm quark mass mc. In the third column we give
the mass difference between the baryon masses obtained at the tuned value of mc and at the tuned value plus the error, after
extrapolation to the physical point. This is done at β = 3.9 where we have computed the masses at mc± error.

Particle(PDG) m0
B (GeV) −4cB (GeV−1) c (GeV−2) χ2/d.o.f. m (GeV)

Σc,av(2.454) 2.437(25) 1.92(54) -2.09(91) 1.1 2.468(17)(23)
Ξ+

cc 3.476(35) 2.39(83) -3.39(1.5) 2.7 3.513(23)(14)
Λ+

c (2286) 2.198(40) 2.99(96) -3.6(1.7) 0.10 2.246(27)(15)
Σ∗

c,av(2.520) 2.520(25) 2.37(51) -2.96(86) 1.3 2.556(18)(51)
Ξ∗

cc,av 3.571(25) 2.02(57) -2.62(99) 1.0 3.603(17)(21)
Ωccc 4.6706(53) 0.327(35) 0. 2.5 4.6769(46)(30)

TABLE IX: Parameters of the chiral fit for charm baryons at the tuned charm quark mass fitting results at β = 3.9 and β = 4.2.
The last column is our prediction (in GeV) at the physical point. The statistical error is given in the first paranthesis and the
systematic, computed by comparing the fit with all lattice data, in the second parenthesis.

motivated by SU(2) HBχPT to leading one-loop order, with c taken as a fit parameter. For the Ωccc we set c = 0
since one does not expect a cubic term.
In order to assess the systematic error associated with the tuning of the charm quark mass we consider our results

at β = 3.9. At this value of β we have computed the charm baryon masses at the tuned value of the charm quark
and at values of the charm quark shifted by the error on the tuned value. Since these computations were performed
at four different light quark masses we can perform a chiral extrapolion using using the Ansatz of Eq. (22 for the set
of masses obtained at the tuned value and at the value shifted by the error. The difference in the masses obtained at
the physical pion mass is given in Tab. VIII. As can be seen, this difference intorduces an error that varies between
about 5% and 10%. This gives an estimate of the systemastic error due to the tuning of the charm quark mass. Since
this analysis can only be done at β = 3.9 we can only make a qualitative estimate of this error. Therefore in what
follows we will not quote this error on our values,. However, one has to bear in mind that our final values can have a
systematic error of about 10% due to the tunning.
In Figs. 13 and 14 we show fits at for our three β values. We show fits using all data and fits using only data at

β = 3.9 and β = 4.2. The latter case yields a better fit with a smaller value of χ/d.o.f. and this is the value quoted in
Table IX. This is particularly noticeable for the case of Ωccc where the results at β = 4.05 are systematically lower.
This maybe due to a small mismatch in the tuned value of the charm quark mass, which for the Ωccc that contains
three charm quarks would lead to the largest deviation. We take the difference in the extrapolated values at the
physical points when we exclude the β = 4.05 data from the fit as a systematic error.
The extrapolation of the lattice data reproduce the mass of experimentally measured charm baryon masses within

a standard deviation, namely the mass of the Σc, the Λc and the Σ∗
c . Therefore, the extrapolated lattice value can be

taken as a prediction for the mass of the Ξ∗
cc and the Ωccc, within one standard deviation.

V. COMPARISON WITH THE RESULTS OF OTHER LATTICE FORMULATIONS

In this section we compare our results with those using different discretization schemes by other collaborations. We
also include a comparison for the nucleon and ∆ masses although they were not discussed in detail until now.
Several collaborations have calculated the strange baryon spectrum. The Budapest-Marseille-Wuppertal (BMW)

collaboration carried out simulations using tree level improved 6-step stout smeared Nf = 2 + 1 clover fermions and
a tree level Symanzik improved gauge action. Volume effects were studied using lattices of spatial extent of 2 fm to
4.1 fm. The continuum limit was taken using results produced on three lattice spacings of a = 0.065 fm, 0.085 fm and
a = 0.125 fm. Using pion masses down to 190 MeV a polynomial was performed to extrapolate to the physical value
of the pion mass [4]. The PACS-CS collaboration obtained results using Nf = 2+1 non-perturbatively O(a) improved
clover fermions on an Iwasaki gauge action on a lattice of spatial length of 2.9 fm and lattice spacing a = 0.09 fm [3].

Without any parmater: unambuguous prediction for « exotic » baryons 
For instance: baryons J=1/2,3/2 stranges and charmed  with C=1,2,3   9

where ∆i = mi −mX is the mass difference of the excited state i with respect to the ground mass mX .
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FIG. 5: Representative effective mass plots for β = 4.2 and aµl = 0.002. For the strange baryons (Left) we used aµs = 0.015,
while for charm baryons (Right) aµc = 0.17.

In Fig. 5 we show representative examples of the effective masses of strange and charm baryons. As can be seen, a
plateau region can be clearly identified. What is shown in these figures are effective masses extracted from correlators
where smearing is applied both at the sink and source. Although local correlators are expected to have the same value
in the large time limit, smearing suppresses excited state contributions yielding a plateau at earlier time separations
and to a better accuracy in the mass extraction. We therefore extract the masses using smeared source and sink. Our
fitting procedure to extract mX is as follows: The sum over excited states in the effective mass given in Eq. (14) is
truncated keeping only the first excited state. Allowing a couple of time slice separation the effective mass is fitted
to the form given in Eq. (14). This yields an estimate for the parameters c1 and ∆1. The lower fit range is increased
until the contribution due to the first excited state is less than 50% of the statistical error of mX . This criterion is
in most of the cases in agreement with a χ2/d.o.f. < 1. In the cases in which this criterion is not satisfied a careful
examination of the effective mass is made to ensure that the fit range is in the plateau region.

III. LATTICE RESULTS

Before we extrapolate our lattice results on the strange and charm baryon masses to the physical point, we need to
examine their dependence on the heavy quark mass as well as cut-off effects. We collect lattice results for the masses
of the strange and charm baryons in the Appendix. The errors are evaluated using jackknife and the Γ-method [34]
to check consistency.
In Figs. 6 and 7 we show the dependence of the strange and charm baryon masses on the the strange and charm

quark mass, respectively. Overall, the data display a linear dependence on both the strange and charm quark mass.
One can therefore interpolate between different values of quark masses, if needed.
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where ∆i = mi −mX is the mass difference of the excited state i with respect to the ground mass mX .
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In Fig. 5 we show representative examples of the effective masses of strange and charm baryons. As can be seen, a
plateau region can be clearly identified. What is shown in these figures are effective masses extracted from correlators
where smearing is applied both at the sink and source. Although local correlators are expected to have the same value
in the large time limit, smearing suppresses excited state contributions yielding a plateau at earlier time separations
and to a better accuracy in the mass extraction. We therefore extract the masses using smeared source and sink. Our
fitting procedure to extract mX is as follows: The sum over excited states in the effective mass given in Eq. (14) is
truncated keeping only the first excited state. Allowing a couple of time slice separation the effective mass is fitted
to the form given in Eq. (14). This yields an estimate for the parameters c1 and ∆1. The lower fit range is increased
until the contribution due to the first excited state is less than 50% of the statistical error of mX . This criterion is
in most of the cases in agreement with a χ2/d.o.f. < 1. In the cases in which this criterion is not satisfied a careful
examination of the effective mass is made to ensure that the fit range is in the plateau region.

III. LATTICE RESULTS

Before we extrapolate our lattice results on the strange and charm baryon masses to the physical point, we need to
examine their dependence on the heavy quark mass as well as cut-off effects. We collect lattice results for the masses
of the strange and charm baryons in the Appendix. The errors are evaluated using jackknife and the Γ-method [34]
to check consistency.
In Figs. 6 and 7 we show the dependence of the strange and charm baryon masses on the the strange and charm

quark mass, respectively. Overall, the data display a linear dependence on both the strange and charm quark mass.
One can therefore interpolate between different values of quark masses, if needed.



Two Baryons on a Lattice  

Evidence for a bound H-dibaryon from LQCD (nf=2+1) !!!! 
NPLQCD 2011  

Let us consider H, the most famous one  
Jaffe 77 MIT bag and SU3F limit  B=100 MeV 
Experimentally: nothing 

           From HeΛΛ: if bound at all,  BH<7 MeV  
 
Several quark models found it unbound  
…as soon as SU3F is broken   

S. Beane et al Phys. Rev. Lett. 106 (2011) 162001 

In fact mπ=400 MeV , a=0.12 fm , a*L=3.9 fm 	


« QCD » changes fast when approaching the physical point	


	


So no real evidence from « real » QCD  …. 

B= 16.6 +/- 2.1 +/- 4.6 MeV  

5

Introduction
In order to estimate H-dibaryon in the real world, 
we study effect of SU(3)F breaking on H phenomenologically.

What is expected?  How can we approach in unbound case?

BB

ΛΛ

ΣΣ

NΞH

SU(3)F limit

Real world

?



Two Baryons on a Lattice  

The H-dibaryon and ΞΞ systems are bound at unphysical quark masses.  

Naive chiral extrapolation of the existing lattice data indicate that at 2-sigma level H can 
be unbound or independent of the quark masses 

occurring between analytic and non-analytic contributions. Without any better guidance as
to the form of the chiral extrapolation, we will consider the results from these two forms of
extrapolation with relatively heavy pions to provide nothing more than an estimate of the
H-dibaryon binding energy at the physical light-quark masses. Extrapolations with more
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FIG. 1: The results of lattice QCD from the NPLQCD collaboration [16] and this work (nf =
2 + 1) (red squares), and the HALQCD collaboration [17] (nf = 3) (blue triangles). The filled
symbols are used in the extrapolations, while the open squares (NPLQCD’s 230-MeV data) are
not. Left panel: The darker (lighter) shaded region corresponds to an extrapolation of the LQCD
calculations that is quadratic in the pion mass, of the form BH(m�) = B0 + d1 m2

� where
the parameters are determined by the central values and statistical uncertainties (statistical and
systematic uncertainties combined in quadrature). The vertical dashed (green) line corresponds to
the physical pion mass. Right panel: Same as the left panel but with the extrapolation BH(m�) =
B̃0 + c1 m�.

complicated behaviors are allowed but cannot be constrained by the current lattice QCD
calculations, and are not discussed further. The chiral extrapolation of the H-dibaryon
binding energy using the form BH(m�) = B0 + d1 m2

� results in the shaded region shown in
Fig. 1 (left panel). The H-dibaryon binding energy at the physical value of the pion mass,
neglecting isospin-violation and electromagnetic interactions, is found to be

Bquadratic
H = 7.4± 2.1± 5.8 MeV , (1)

as indicated by the intercept of the shaded region with the (green) dashed line in Fig. 1 (left
panel). The first uncertainty results from an extrapolation using the statistical uncertainties
of both lattice QCD calculations, while the second uncertainty results from the systematic
uncertainties. The quadratic extrapolation suggests that the H-dibaryon is bound at the
physical value of the pion mass. However, the H-dibaryon is unbound at the 2� level, and
a near threshold scattering state remains allowed by the current lattice QCD calculations.
Further, at the 2� level, the extrapolation is also consistent with the binding energy being
independent of m�.

Using the form BH(m�) = B̃0 + c1 m� to chirally extrapolate the lattice QCD calculations
produces the results shown in Fig. 1 (right panel). The H-dibaryon binding energy at the
physical value of the pion mass is found to be

Blinear
H = �0.2± 3.3± 7.3 MeV , (2)

as indicated by the intercept of the shaded region with the (green) dashed line in Fig. 1 (right
panel). With the precision of the current lattice QCD results, the linear chiral extrapolation
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Bound H-dibaryon in Flavor SU(3) Limit of Lattice QCD
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The flavor-singlet H-dibaryon, which has strangeness −2 and baryon number 2, is studied by the
approach recently developed for the baryon-baryon interactions in lattice QCD. The flavor-singlet
central potential is derived from the spatial and imaginary-time dependence of the Nambu-Bethe-
Salpeter wave function measured in Nf = 3 full QCD simulations with the lattice size of L " 2, 3, 4
fm. The potential is found to be insensitive to the volume, and it leads to a bound H-dibaryon with
the binding energy of 30–40 MeV for the pseudo-scalar meson mass of 673–1015 MeV.

PACS numbers: 11.15.Ha, 12.38.Aw, 12.38.-t 12.38.Gc

Search for dibaryons is one of the most challenging
theoretical and experimental problems in the physics
of strong interaction and quantum chromodynamics
(QCD). In the non-strange sector, only one dibaryon, the
deuteron, is known experimentally. In the strange sector,
on the other hand, it is still unclear whether there are
bound dibaryons or dibaryon resonances. Among others,
the flavor-singlet state (uuddss), the H-dibaryon, has
been suggested to be the most promising candidate [1].
The H may also be a doorway to strange matter and to
exotic hyper-nuclei [2]. Although deeply bound H with
the binding energy BH > 7 MeV has been ruled out by
the discovery of the double Λ nuclei, 6

ΛΛHe [3], there still
remains a possibility of a shallow bound state or a reso-
nance in this channel [4].

While several lattice calculations on H have been re-
ported as reviewed in [5] (see also recent works [6–8]),
there is a serious problem in studying dibaryons on the
lattice: To accommodate two baryons inside the lattice
volume, the spatial lattice size L should be large enough.
Once L becomes large, however, energy levels of two
baryons become dense, so that quite a large imaginary-
time t is required to make clear isolation of the ground
state from the excited states. All the previous works on
dibaryons more or less face this issue (see also [9]).

The purpose of this Letter is to shed a new light on
the H-dibaryon by extending the lattice approach re-
cently proposed by the present authors [7, 10]. Our start-

ing point is the baryon-baryon potential obtained from
the Nambu-Bethe-Salpeter (NBS) amplitude measured
on the lattice [10]. Such a potential together with the
NBS amplitude can be shown to satisfy the Schrödinger
type equation and to reproduce the correct phase shifts
at low energies. It was found on the lattice in the flavor
SU(3) limit [7] that, while the celebrated repulsive core of
the potential appears in the nucleon-nucleon(NN) chan-
nels, the “attractive core” emerges in the H-dibaryon
channel. These features at the short range part of the
potential are essentially dictated by the Pauli exclusion
principle in the quark level: Six-quarks residing at the
same spatial point is partially forbidden by the quark
Pauli effect in the NN channels, which belong to the fla-
vor 27-plet or 10∗-plet, while the flavor-singlet six-quarks
do not suffer from the Pauli effect [11] (see also [12]).

The approach based on the baryon-baryon potential
has several advantages. In particular it can be used not
only to reduce the finite volume artifact but also to avoid
the problem of contaminations from excited states, as will
be explained later. In this Letter, to capture essential fea-
tures of the H-dibaryon without being disturbed by the
quark mass differences, we consider the flavor SU(3) limit
where all u, d, and s quarks have a common finite mass.
This allows us to extract baryon-baryon potentials for ir-
reducible flavor multiplets and to make the comparison
among different flavor channels in a transparent manner.
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Abstract
The current constraints from Lattice QCD on the existence of the H-dibaryon are discussed. With
only two significant Lattice QCD calculations of the H-dibaryon binding energy at approximately
the same lattice spacing, the form of the chiral and continuum extrapolations to the physical point
are not determined. In this brief report, we consider the constraints on the H-dibaryon imposed
by two simple chiral extrapolations. In both instances, the extrapolation to the physical pion
mass allows for a bound H-dibaryon or a near-threshold scattering state. Further Lattice QCD
calculations are required to refine this situation.
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FIG. 1: The results of Lattice QCD from the NPLQCD collaboration [8] (nf = 2 + 1) (red points)
and the HALQCD collaboration [9] (nf = 3) (blue points). Left panel: The darker (lighter) shaded
region corresponds to an extrapolation of the LQCD calculations that is quadratic in the pion mass,
of the form B(m�) = B0 + d1 m2

� where the parameters are determined by the central values and
statistical uncertainties (statistical and systematic uncertainties combined in quadrature). The
vertical dashed (green) line corresponds to the physical pion mass. Right panel: Same as the left
panel but with the extrapolation B(m�) = B0 + c1 m�.

B(m�) = B0 + d1 m2
� results in the shaded region shown in fig. 1 (left panel) 5. The H-

dibaryon binding energy at the physical value of the pion mass, neglecting isospin-violation
and electromagnetic interactions, is found to be

Bquadratic
H = +11.5± 2.8± 6.0 MeV , (1)

as indicated by the intercept of the shaded region with the (green) dashed line in fig. 1 (left
panel). The first uncertainty results from an extrapolation using the statistical uncertain-
ties of both Lattice QCD calculations, while the second error results from the systematic
uncertainties 6. The quadratic extrapolation suggests that the H-dibaryon is bound at the
physical value of the pion mass. However, the H-dibaryon is unbound at the 2� level, and
a near threshold scattering state remains allowed by the current Lattice QCD calculations.
Further, at the 2� level, the extrapolation is also consistent with the binding energy being
independent of m�.

Using the form B(m�) = B0 + c1 m� to chirally extrapolate the results of the NPLQCD
and HALQCD Lattice QCD calculations of the H-dibaryon binding energy produces the
results shown in fig. 1 (right panel). The H-dibaryon binding energy at the physical value
of the pion mass is found to be

Blinear
H = +4.9± 4.0± 8.3 MeV , (2)

5 As the (fractional) uncertainties in the pion mass are much smaller than those of the H-dibaryon binding
energy, they make a negligible contribution to the uncertainty in the extrapolation region and in the
extrapolated binding energy in both the quadratic and linear extrapolations.

6 To be more precise, the second uncertainty results from extrapolating the statistical and systematic
uncertainties of the Lattice QCD calculations combined in quadrature, and then removing the contribution
from the statistical - also in quadrature.

4

The possibility of a bound H-dibaryon [1–6], whose existence was postulated by Ja�e [7]
in 1977, has been explored with Lattice QCD during the last few decades. Recently, the
NPLQCD and HALQCD collaborations have recently reported results that show that the
H-dibaryon is bound for a range of light-quark masses that are larger than those found
in nature [8, 9]. These calculations are important for a number of reasons. First, they
show that Lattice QCD is now capable of calculating the energy of simple nuclei, with the
H-dibaryon being an exotic example of such. Second, they provide evidence that a bound H-
dibaryon may exist for some values of parameters entering the QCD Lagrangian. However,
it is important to determine if this system is, in fact, bound at the physical values of the
light-quark masses and with the inclusion of the electroweak interactions. Experimental
evidence currently suggests that such a bound state does not exist [10], but that a near-
threshold resonance may exist in the scattering-channel with the quantum numbers of the
H-dibaryon [11]. In this note we establish the current constraints on the binding of the
H-dibaryon at the physical values of the light-quark masses, in the isospin limit and in the
absence of electroweak interactions, by extrapolating the available Lattice QCD results.

The details of the two Lattice QCD calculations that provide statistically significant
evidence for a bound H-dibaryon can be found in the very recent works of NPLQCD [8]
and HALQCD [9]. The NPLQCD result is determined from calculations in four lattice
volumes (with spatial extents of L � 2.0, 2.5, 3.0 and 4.0 fm), each at a single spatial
lattice-spacing of b � 0.123 fm and a pion mass of m� � 390 MeV. A binding energy of
BH = 16.6± 2.1± 4.6 MeV was determined at that pion mass. The HALQCD collaboration
performed calculations in three lattice volumes (with spatial extents of L � 2.0, 3.0 and
4.0 fm) at a lattice spacing of b � 0.121 fm and in the limit of SU(3) flavor symmetry at three
di�erent quark masses giving m� � 673, 837 and 1015 MeV. In order to extrapolate in the
quark masses, the binding energy of BH = 37.4± 4.4± 7.3 MeV obtained at m� � 837 MeV
is used because this pion mass corresponds to a strange-quark mass that is closest to that of
nature (and that of the NPLQCD calculations) 1. One should keep in mind all of the usual,
well-documented, caveats associated with chiral extrapolations involving heavy pions.

NPLQCD 2 and HALQCD employed di�erent clover discretizations for the light-quarks
(and di�erent gauge-actions), providing results that are O(b)-improved and therefore both
sets of calculations have lattice-spacing errors that scale as O(b2). A complete treatment of
these e�ects, and a continuum extrapolation, requires Lattice QCD calculations at more than
one lattice spacing. Given the precision with which the single-hadron energy-momentum
relation is satisfied [8], the contributions from Lorentz-symmetry breaking operators that
appear at this order are expected to be highly suppressed. Naive scaling arguments, as well
as the cancellations that occur in forming energy di�erences, suggest that lattice spacing
artifacts are suppressed, as compared, for instance, to the leading quark-mass e�ects. How-
ever, definitive statements about the lattice spacing dependence will require calculations at
a smaller lattice spacing. In this brief report, we assume that lattice spacing artifacts are

1 The energy-level(s) determined in the Lattice QCD calculation of HALQCD [9] is exponentially close to the
actual bound-state energy of the H-dibaryon and does not su�er from the uncontrolled approximations that
are present in phase-shifts calculated via the energy-dependent and sink-dependent potentials presented
by HALQCD. It is only the energy eigenvalue that is used in our present analysis.

2 NPLQCD used anisotropic gauge field configurations that were generated by the Hadron Spectrum Col-
laboration [12, 13]. The temporal and spatial lattice spacings, bt and bs respectively, are related by
bt = bs/�t where �t = 3.5.
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occurring between analytic and non-analytic contributions. Without any better guidance as
to the form of the chiral extrapolation, we will consider the results from these two forms of
extrapolation with relatively heavy pions to provide nothing more than an estimate of the
H-dibaryon binding energy at the physical light-quark masses. Extrapolations with more
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FIG. 1: The results of lattice QCD from the NPLQCD collaboration [16] and this work (nf =
2 + 1) (red squares), and the HALQCD collaboration [17] (nf = 3) (blue triangles). The filled
symbols are used in the extrapolations, while the open squares (NPLQCD’s 230-MeV data) are
not. Left panel: The darker (lighter) shaded region corresponds to an extrapolation of the LQCD
calculations that is quadratic in the pion mass, of the form BH(m�) = B0 + d1 m2

� where
the parameters are determined by the central values and statistical uncertainties (statistical and
systematic uncertainties combined in quadrature). The vertical dashed (green) line corresponds to
the physical pion mass. Right panel: Same as the left panel but with the extrapolation BH(m�) =
B̃0 + c1 m�.

complicated behaviors are allowed but cannot be constrained by the current lattice QCD
calculations, and are not discussed further. The chiral extrapolation of the H-dibaryon
binding energy using the form BH(m�) = B0 + d1 m2

� results in the shaded region shown in
Fig. 1 (left panel). The H-dibaryon binding energy at the physical value of the pion mass,
neglecting isospin-violation and electromagnetic interactions, is found to be

Bquadratic
H = 7.4± 2.1± 5.8 MeV , (1)

as indicated by the intercept of the shaded region with the (green) dashed line in Fig. 1 (left
panel). The first uncertainty results from an extrapolation using the statistical uncertainties
of both lattice QCD calculations, while the second uncertainty results from the systematic
uncertainties. The quadratic extrapolation suggests that the H-dibaryon is bound at the
physical value of the pion mass. However, the H-dibaryon is unbound at the 2� level, and
a near threshold scattering state remains allowed by the current lattice QCD calculations.
Further, at the 2� level, the extrapolation is also consistent with the binding energy being
independent of m�.

Using the form BH(m�) = B̃0 + c1 m� to chirally extrapolate the lattice QCD calculations
produces the results shown in Fig. 1 (right panel). The H-dibaryon binding energy at the
physical value of the pion mass is found to be
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H = �0.2± 3.3± 7.3 MeV , (2)

as indicated by the intercept of the shaded region with the (green) dashed line in Fig. 1 (right
panel). With the precision of the current lattice QCD results, the linear chiral extrapolation
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The flavor-singlet H-dibaryon, which has strangeness −2 and baryon number 2, is studied by the
approach recently developed for the baryon-baryon interactions in lattice QCD. The flavor-singlet
central potential is derived from the spatial and imaginary-time dependence of the Nambu-Bethe-
Salpeter wave function measured in Nf = 3 full QCD simulations with the lattice size of L " 2, 3, 4
fm. The potential is found to be insensitive to the volume, and it leads to a bound H-dibaryon with
the binding energy of 30–40 MeV for the pseudo-scalar meson mass of 673–1015 MeV.

PACS numbers: 11.15.Ha, 12.38.Aw, 12.38.-t 12.38.Gc

Search for dibaryons is one of the most challenging
theoretical and experimental problems in the physics
of strong interaction and quantum chromodynamics
(QCD). In the non-strange sector, only one dibaryon, the
deuteron, is known experimentally. In the strange sector,
on the other hand, it is still unclear whether there are
bound dibaryons or dibaryon resonances. Among others,
the flavor-singlet state (uuddss), the H-dibaryon, has
been suggested to be the most promising candidate [1].
The H may also be a doorway to strange matter and to
exotic hyper-nuclei [2]. Although deeply bound H with
the binding energy BH > 7 MeV has been ruled out by
the discovery of the double Λ nuclei, 6

ΛΛHe [3], there still
remains a possibility of a shallow bound state or a reso-
nance in this channel [4].

While several lattice calculations on H have been re-
ported as reviewed in [5] (see also recent works [6–8]),
there is a serious problem in studying dibaryons on the
lattice: To accommodate two baryons inside the lattice
volume, the spatial lattice size L should be large enough.
Once L becomes large, however, energy levels of two
baryons become dense, so that quite a large imaginary-
time t is required to make clear isolation of the ground
state from the excited states. All the previous works on
dibaryons more or less face this issue (see also [9]).

The purpose of this Letter is to shed a new light on
the H-dibaryon by extending the lattice approach re-
cently proposed by the present authors [7, 10]. Our start-

ing point is the baryon-baryon potential obtained from
the Nambu-Bethe-Salpeter (NBS) amplitude measured
on the lattice [10]. Such a potential together with the
NBS amplitude can be shown to satisfy the Schrödinger
type equation and to reproduce the correct phase shifts
at low energies. It was found on the lattice in the flavor
SU(3) limit [7] that, while the celebrated repulsive core of
the potential appears in the nucleon-nucleon(NN) chan-
nels, the “attractive core” emerges in the H-dibaryon
channel. These features at the short range part of the
potential are essentially dictated by the Pauli exclusion
principle in the quark level: Six-quarks residing at the
same spatial point is partially forbidden by the quark
Pauli effect in the NN channels, which belong to the fla-
vor 27-plet or 10∗-plet, while the flavor-singlet six-quarks
do not suffer from the Pauli effect [11] (see also [12]).

The approach based on the baryon-baryon potential
has several advantages. In particular it can be used not
only to reduce the finite volume artifact but also to avoid
the problem of contaminations from excited states, as will
be explained later. In this Letter, to capture essential fea-
tures of the H-dibaryon without being disturbed by the
quark mass differences, we consider the flavor SU(3) limit
where all u, d, and s quarks have a common finite mass.
This allows us to extract baryon-baryon potentials for ir-
reducible flavor multiplets and to make the comparison
among different flavor channels in a transparent manner.
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Abstract
The current constraints from Lattice QCD on the existence of the H-dibaryon are discussed. With
only two significant Lattice QCD calculations of the H-dibaryon binding energy at approximately
the same lattice spacing, the form of the chiral and continuum extrapolations to the physical point
are not determined. In this brief report, we consider the constraints on the H-dibaryon imposed
by two simple chiral extrapolations. In both instances, the extrapolation to the physical pion
mass allows for a bound H-dibaryon or a near-threshold scattering state. Further Lattice QCD
calculations are required to refine this situation.
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FIG. 1: The results of Lattice QCD from the NPLQCD collaboration [8] (nf = 2 + 1) (red points)
and the HALQCD collaboration [9] (nf = 3) (blue points). Left panel: The darker (lighter) shaded
region corresponds to an extrapolation of the LQCD calculations that is quadratic in the pion mass,
of the form B(m�) = B0 + d1 m2

� where the parameters are determined by the central values and
statistical uncertainties (statistical and systematic uncertainties combined in quadrature). The
vertical dashed (green) line corresponds to the physical pion mass. Right panel: Same as the left
panel but with the extrapolation B(m�) = B0 + c1 m�.

B(m�) = B0 + d1 m2
� results in the shaded region shown in fig. 1 (left panel) 5. The H-

dibaryon binding energy at the physical value of the pion mass, neglecting isospin-violation
and electromagnetic interactions, is found to be

Bquadratic
H = +11.5± 2.8± 6.0 MeV , (1)

as indicated by the intercept of the shaded region with the (green) dashed line in fig. 1 (left
panel). The first uncertainty results from an extrapolation using the statistical uncertain-
ties of both Lattice QCD calculations, while the second error results from the systematic
uncertainties 6. The quadratic extrapolation suggests that the H-dibaryon is bound at the
physical value of the pion mass. However, the H-dibaryon is unbound at the 2� level, and
a near threshold scattering state remains allowed by the current Lattice QCD calculations.
Further, at the 2� level, the extrapolation is also consistent with the binding energy being
independent of m�.

Using the form B(m�) = B0 + c1 m� to chirally extrapolate the results of the NPLQCD
and HALQCD Lattice QCD calculations of the H-dibaryon binding energy produces the
results shown in fig. 1 (right panel). The H-dibaryon binding energy at the physical value
of the pion mass is found to be

Blinear
H = +4.9± 4.0± 8.3 MeV , (2)

5 As the (fractional) uncertainties in the pion mass are much smaller than those of the H-dibaryon binding
energy, they make a negligible contribution to the uncertainty in the extrapolation region and in the
extrapolated binding energy in both the quadratic and linear extrapolations.

6 To be more precise, the second uncertainty results from extrapolating the statistical and systematic
uncertainties of the Lattice QCD calculations combined in quadrature, and then removing the contribution
from the statistical - also in quadrature.
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The possibility of a bound H-dibaryon [1–6], whose existence was postulated by Ja�e [7]
in 1977, has been explored with Lattice QCD during the last few decades. Recently, the
NPLQCD and HALQCD collaborations have recently reported results that show that the
H-dibaryon is bound for a range of light-quark masses that are larger than those found
in nature [8, 9]. These calculations are important for a number of reasons. First, they
show that Lattice QCD is now capable of calculating the energy of simple nuclei, with the
H-dibaryon being an exotic example of such. Second, they provide evidence that a bound H-
dibaryon may exist for some values of parameters entering the QCD Lagrangian. However,
it is important to determine if this system is, in fact, bound at the physical values of the
light-quark masses and with the inclusion of the electroweak interactions. Experimental
evidence currently suggests that such a bound state does not exist [10], but that a near-
threshold resonance may exist in the scattering-channel with the quantum numbers of the
H-dibaryon [11]. In this note we establish the current constraints on the binding of the
H-dibaryon at the physical values of the light-quark masses, in the isospin limit and in the
absence of electroweak interactions, by extrapolating the available Lattice QCD results.

The details of the two Lattice QCD calculations that provide statistically significant
evidence for a bound H-dibaryon can be found in the very recent works of NPLQCD [8]
and HALQCD [9]. The NPLQCD result is determined from calculations in four lattice
volumes (with spatial extents of L � 2.0, 2.5, 3.0 and 4.0 fm), each at a single spatial
lattice-spacing of b � 0.123 fm and a pion mass of m� � 390 MeV. A binding energy of
BH = 16.6± 2.1± 4.6 MeV was determined at that pion mass. The HALQCD collaboration
performed calculations in three lattice volumes (with spatial extents of L � 2.0, 3.0 and
4.0 fm) at a lattice spacing of b � 0.121 fm and in the limit of SU(3) flavor symmetry at three
di�erent quark masses giving m� � 673, 837 and 1015 MeV. In order to extrapolate in the
quark masses, the binding energy of BH = 37.4± 4.4± 7.3 MeV obtained at m� � 837 MeV
is used because this pion mass corresponds to a strange-quark mass that is closest to that of
nature (and that of the NPLQCD calculations) 1. One should keep in mind all of the usual,
well-documented, caveats associated with chiral extrapolations involving heavy pions.

NPLQCD 2 and HALQCD employed di�erent clover discretizations for the light-quarks
(and di�erent gauge-actions), providing results that are O(b)-improved and therefore both
sets of calculations have lattice-spacing errors that scale as O(b2). A complete treatment of
these e�ects, and a continuum extrapolation, requires Lattice QCD calculations at more than
one lattice spacing. Given the precision with which the single-hadron energy-momentum
relation is satisfied [8], the contributions from Lorentz-symmetry breaking operators that
appear at this order are expected to be highly suppressed. Naive scaling arguments, as well
as the cancellations that occur in forming energy di�erences, suggest that lattice spacing
artifacts are suppressed, as compared, for instance, to the leading quark-mass e�ects. How-
ever, definitive statements about the lattice spacing dependence will require calculations at
a smaller lattice spacing. In this brief report, we assume that lattice spacing artifacts are

1 The energy-level(s) determined in the Lattice QCD calculation of HALQCD [9] is exponentially close to the
actual bound-state energy of the H-dibaryon and does not su�er from the uncontrolled approximations that
are present in phase-shifts calculated via the energy-dependent and sink-dependent potentials presented
by HALQCD. It is only the energy eigenvalue that is used in our present analysis.

2 NPLQCD used anisotropic gauge field configurations that were generated by the Hadron Spectrum Col-
laboration [12, 13]. The temporal and spatial lattice spacings, bt and bs respectively, are related by
bt = bs/�t where �t = 3.5.

2

error

Evidence for binding



Two Baryons on a Lattice  

Difficult to follow…. but LQCD seems to confirm model predictions:  
H bound in SU3 (recovered by large pion  mass) 
BH drecreases when going to physical point 
Progress are great but there is no firm conclusion.  
Only « impressions » : NOT BOUND ! 

HAL QCD (Aoki, Doi, Hatsuda, Ishi,..)  
 
 

4

@Lattice2011

● Left:  Observed bound state in 1F BB channel.
● Binding energy of H is 50 – 20 MeV depending on mq.

● Right: Summary of H binding energy from FLQCD.
● SR. Beane etal [NPLQCD colla.] Phys. Rev. Lett. 106, 162001 (2011) 
● Resulting H-dibaryon mass from the two groups looks consistent.

T. Inoue, T. Doi in Lattice 2012, Inoue et al NPA881(2012)28 

Wilson-Clover, Nf=3 a=0.12 fm mπ=0.47-1.2 GeV   

T. Doi Lattice 2012 
With mπ=470 MeV=MK, H bound with B= 26-49 MeV 
 
 
 
T. Inoue Lattice 2012 
When SU3 is broken, H goes through ΛΛ:  
it is unlikely that H is bound   



The very last results (two weeks ago)"



Three and Four Nucleons on a Lattice  (I) 
With  a lot of courage (+ PhD grants + Postdocs) one can compute 6A-point euclidean 
correlators to obtain A=3,4 bound states…  not much more ! 

Some japanees and american groups (PACS CS, HAL QCD) had all that … 
It is extremly complex: number of “Wick contractions” increases factorially 
For 4He about 500 000 contraction …. 
Signal/Noise is very small and the extraction of effective masses very difficult 
Physically is easyest to get A=3,4 than deuteron, quite a fragile and extended object 
The r2 (4He) is smaller than deuteron and B/A=7…. 7 times bigger   
3. Preliminary results
4He and 3He channels ∆EL = E0 −NNmN

Identification of bound state from volume dependence of ∆E
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• ∆EL < 0 and small volume dependence
• Infinite volume extrapolation with ∆EL = −∆Ebind + C/L3

8

Yamazaki (PACS CS) at Lattice 2012 



Three and Four Nucleons on a Lattice  (II) 

31 

Spectroscopy on the lattice 

[K.Orginos (Wed.)] 

[T.Yamazaki (Tue.)] 
(NB: PACS-CS Nf=2+1: preliminary) 

T. Doi, Plenary talk at Lattice 2012 

For a nuclear physicist it is very impressive to « get out a nuclei » from (almost) nothing ! 
VNN « models » (conventional meson-exchange or QCD-inspired EFT) have 20-40 parameters 
 
However this result will not very useful to the Nuclear Physics community…. 
Models will remain mandatories for usual nuclear physics beyond A=4 



Nuclei (A=3,4)

NPLQCD arXiv:1206.5219



SCATTERING STATES!



At the begining (Maiani-Testa):  « no scattering » in Euclidean 
In addition: 2 partices are always confined on a lattice with peridic boundary condition…. 
 
Luscher 87: The energy levels εn(L) of 2-particle states in a box (L) provide the phase-shifts 

In the simplest case: ground state ε0(L) provides the scattering length A0  

4.1 Low energy scattering parameters

For a coupling constant G < G0 = 1.68, the two-body system in the infinite volume has only
scattering states while in a finite box the spectrum is constituted by a series of discrete values.

In his first work devoted to this subject [3], Luscher established a relation between
the two-body binding energy εn(L) on a 3-dimensional spacial lattice with periodic boundary
conditions and the corresponding scattering length. For the S-wave ground state energy ε0(L)
it reads [22]

ε0(L) =
4πA0

(aL)3

{

1 + c1

(

A0

aL

)

+ c2

(

A0

aL

)2

+ . . .

}

(22)

where A0 is the infinite volume scattering length and c1 = 2.837297 and c2 = 6.375183 are
universal constants, independent of the details of the particular dynamics. This relation was
proved to be valid in non relativistic quantum mechanics as well as in quantum field theory and
must be considered as an asymptotic series on powers of A0/(aL). For attractive potentials,
and with our convention for the scattering length, one has A0(G < G0) < 0 and consequently
ε0(L) < 0.

Equation (22) is the most popular of the Luscher relations and has been widely used
in lattice calculations to extract the value of A0 from a fit to the computed ε0(L). We adopt a
slightly different point of view by constructing from the ε0(L) values, quantities tending to A0

– the quantity we are interested in – for large values of aL. This merely consists in inverting
(22).

To this aim it is interesting to consider slowly varying functions and to use – rather
than ε0(L) – the combination

A(0)
0 (L) ≡

1

4π
(aL)3ε0(L) (23)

It tends asymptotically (aL → ∞) to the infinite volume scattering length A0 and constitutes
the zero-th order approximation of Luscher expansion which can be written as

A(0)
0 (L) = A0

{

1 + c1

(

A0

aL

)

+ c2

(

A0

aL

)2

+ . . .

}

(24)

It is possible to get a series A(n)
0 (L) of improved values converging towards A0 by solving

equation (24) truncated at the order n for a fixed value of L. One thus obtains, for instance

A(2)
0 (L) = aL z(2) (25)

where z(2) is a solution of the cubic equation

z(c2z
2 + c1z + 1) =

A(0)
0 (L)

aL

This expansion is however of small practical interest for it requires lattice sizes one or
two order of magnitude larger than the scattering length, as it was already noticed in reference
[9].

Figure 9 represents the A(0)
0 (L) results for the ground state obtained with G = 0.40

and a = 0.20. Dashed lines correspond to the solutions with the infinite volume interaction

12

c1 and c2 are universal known coefficients  
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The phase-shifts are obtained in a similar way 

S being some universal function 
(depending on L) 



Many interesting results have been obtained (most of them with mp>>140 MeV) 
on Meson-Meson, Meson-Baryon, Baryon-Baryon  

ππ scattering phase shifts 



Resonance Parameters of the ρ-meson  

II. METHOD

A. Scattering phase

In an elastic scattering system, the relativistic Breit-Wigner form (RBWF) for the scat-

tering amplitude al with a resonance at a center-of-mass (CM) energy MR and with a decay

width ΓR is [20]

al =
−
√
sΓR(s)

s−M2
R + i

√
sΓR(s)

, s = E2
CM ,

where ECM is the CM energy and al is related to the scattering phase of the lth partial wave,

δl, through al = (e2iδl − 1)/2i. The RBWF corresponding to δl is then

tan δl =

√
sΓR(s)

M2
R − s

. (1)

The ρ-resonance has quantum numbers IG(JPC) = 1+(1−−) and decays into two pions in

the P-wave. A description of the scattering phase as a function of the ECM is provided by

the effective range formula (ERF) [21]

tan δ1 =
g2ρππ
6π

p3

ECM(m2
ρ − E2

CM)
, p =

√

E2
CM/4−m2

π , (2)

which fits the experimental data well. In Eq. (2) δ1 is the P-wave pion-pion scattering

phase, gρππ is the effective ρ → ππ coupling constant and mρ is the ρ-meson mass. We

remark already at this point that we will use the ERF also for our lattice calculations to

fit the scattering phase, even when using pion masses that are larger than the physical one.

Comparing Eqs. (1) and (2), we find that the ERF is a particular case of the RBWF if the

parameters MR and ΓR(s) are chosen such that

MR = mρ , ΓR(s) =
g2ρππ
6π

p3

s
.

The rho decay width Γρ can then be computed in the following way,

Γρ = ΓR(s)

∣

∣

∣

∣

s=m2
ρ

=
g2ρππ
6π

p3ρ
m2

ρ

, pρ =
√

m2
ρ/4−m2

π . (3)

Thus Eqs. (2) and (3) allow us to extract mρ and Γρ by studying the dependence of the

pion-pion scattering phase δ1 on ECM .

4

calculations and not as a precise determination of these parameters. The results we have

obtained here demonstrate that resonances can indeed be analyzed on finite lattices with

numerical calculations. This is very promising, given the number of hadrons that appear in

the physical QCD spectrum as resonances.
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FIG. 5: The effective coupling gρππ as a function of the square of the pion mass.

V. CONCLUSION

In this work, we have calculated the P-wave pion-pion scattering phase in the I = 1 chan-

nel near the ρ-meson resonance region. We have performed our calculations at pion masses

ranging from 480 to 290 MeV and at a lattice spacing of a = 0.079 fm. At all the pion

masses, the physical kinematics for the ρ-meson decay, mπ/mρ < 0.5, is satisfied. Compared

to previous calculations, we have pushed the techniques much farther forward by employ-

ing three Lorentz frames simultaneously. This allowed us, in particular, to map out the

energy region of the resonance without having to employ larger and more computationally

demanding lattice calculations.

Making use of Lüscher’s finite-size methods, we evaluated the scattering phase from six
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FIG. 4: The ρ-meson resonance mass as a function of the square of the pion mass. In the left

panel, we fit the lattice results to Eq. (19). In the right panel, we fit them to Eq. (18). Note that

these are combined fits to mρ and Γρ (shown in Fig. 6).

Eq. (3) shows that the decay width is determined from the fitted values of both mρ

and gρππ. Hence, we expect that it will reflect a combination of the aspects just discussed.

In fact, in the chiral limit Eq. (3) reduces to Γρ = mρg2ρππ/(48π). Thus the fact that

mρ overshoots the experimental measurement implies that Γρ will also be larger than the

measured value. Additionally, the error of gρππ will be enhanced in Γρ leading to larger errors

in the width than in the mass. These features can indeed be seen in Fig. 6, where we show

the lattice results for Γρ as a function of the square of the pion mass together with the fit

to Eq. (19) in the left panel and with the fit to Eq. (18) in the right panel. At the physical

point, the decay widths are obtained as Γρ,phy = 171(31) MeV using the fit to Eq. (19)

and as Γρ,phy = 166(49) MeV using the fit to Eq. (18). Both of the results are consistent

with the PDG value Γρ,PDG = 149.1(0.8) MeV within 1σ. Note, however, that obviously the

values determined from our lattice calculation are much less accurate than the one extracted

from experimental measurements. Therefore, we consider the present work more as an initial

study of how accurately resonance parameters can be extracted from nonperturbative lattice
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FIG. 6: The ρ-meson decay width as a function of the square of the pion mass. The left panel

shows the lattice results and the fit to Eq. (19). The right panel shows the fit to Eq. (18). Note

that these are combined fits to Γρ and mρ (shown in Fig. 4).

energy eigenvalues per ensemble. In this way, we could fit the scattering phase with an

effective range formula allowing us to extract the ρ-resonance mass mρ, the decay width

Γρ and the effective coupling gρππ. Taking the inherent relation between mρ and Γρ into

account, we have performed a fit to our results, obtained at four values of the pion mass,

as a function of the complex parameter Z = (mρ − iΓρ/2)2. This provided a means of

extrapolation to the physical point. Even though our fit formulae are guided by EFT, our

results are not precise enough to perform a thorough test of the fit ansätze.

Keeping in mind the caveats just discussed, we quote for the ρ-meson mass mρ,phys =

0.850(35) GeV and for the decay width Γρ,phys = 0.166(49) GeV. When these values are

compared to the corresponding experimentally measured quantities, it is clear that the

lattice computations cannot yet match the experimental accuracy. Although a precise de-

termination of resonance parameters on the lattice is still a challenge, our work serves as a

next step in the attempt to understand the strong decays in a conceptually clean way.
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Nucleon-Nucleon Potential 

The most popular application of scattering in LQCD is the extraction of the NN potential 
It deserves some remarks that could open further discussions 

 Nucleons are very complicate objects 

What results into very complicated interactions 

Sinya AOKI

University of Tsukuba

“Japan Days” Colloquium, May 2, 2011, University of Wuppertal

The 150th anniversary of the Friendship Treaty 
between Japan and Germany

2011年5月11日水曜日

If we want to describe it by "potentials" V   
                                             between pointlike objects...... 

2. Strategy in (lattice) QCD 
to extract “potential”

Challenge to Nambu’s statement 

“Even now, it is impossible to completely describe nuclear forces beginning 

with a fundamental equation.  But since we know that nucleons themselves are 
not elementary, this is like asking if one can exactly deduce the characteristics 

of a very complex molecule starting from Schroedinger equation, a practically 
impossible task.” 

Y. Nambu, “Quarks � Frontiers in Elementary Particle Physics”,  World Scientific  (1985)          

2011年5月11日水曜日

 I. Concerning the interaction 



It is not astonishing to end up with "monsters” having many many parameters..... 
ensuring an almost perfect description  Χ2/datum=1.01 of the very rich NN data (TL<300MeV) 
 
Example of NN “potential”  Epelbaum Joliot Curie School 2010, since it has been improved (N4LO) 

Does it exist at all ? 



1. Compute ΔE=E-E0 and corresponding phase shift  δ0(E) (Luscher)   

• well-defined statistical system (finite a and L)
• gauge invariant
• fully non-perturbative

x� x�

Monte-Calro
simulations

L

a

Quenched QCD : neglects creation-anihilation of quark-anitiquak pair
Full QCD : includes creation-anihilation of quark-anitiquak pair

Zoltan’s talk

2011年5月11日水曜日

2. Compute the euclidean Bethe-Salpeter amplitude (well defined)  

3. Identify ΦBS to  ΨSch (eliminating  k0 dependence) 
4. Insert it the Schrodinger and ”deduce a V"... which depends on E 
- Either by adjusting some parametrized form of V to give the same δ0 
- Either by 

1 VNN

ΦBS(x − y) = 〈0 | N(x)N(y) | NN〉
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1.2 Méthode graphique (fonction de vertex)

!!!!!!!

"

p2 = P
2 − k

#######

$

p1 = P
2 + k

!

P
=

%p2 p′2 = P
2 − k′

%p1
p′1 = P

2 + k′

!!!!!!!

"
#######

$

!

Γ(k, P ) K(k, k′, P )

p1 + p2 = P
p1 − p2 = 2k

On suppose la ”Vertex fonction” Γ, sur qui s’appliquent les règles de Feynmann

Γ(p1, p2) ≡ Γ(k, P )

satisfaire l’équation intégrale de la figure. On obtient suivant ces règles1

Γ(k, P ) =
∫

d4k′

(2π)4
iK(k, k′;P ) S1(p1) S2(p2) Γ(k′, P ) (1)

où:

1. Si sont les propagateurs2

S1(p1) =
i

p2
1 − m2 + iε

=
i

(

P
2 + k

)2
− m2 + iε

S2(p2) =
i

p2
2 − m2 + iε

=
i

(

P
2 − k

)2
− m2 + iε

2. K est le interaction kernel, qui correspond à la boite et est donné par les diagrammes de Feynman. Pour le
cas d’echange scalaire on a3

K = −
g2

(k − k′)2 − µ2 + iε

Si on introduit la fonction – ou amplitude – de BS par

Φ(k, P ) = S1(k, P ) S2(k, P ) Γ(k, P )

elle obéit l’équation de BS ”canonique”

Φ(k, P ) = S1(k, P )S2(k, P )
∫

d4k′

(2π)4
iK(k, k′;P ) Φ(k′, P ) (2)

ou encore
[

(

P

2
+ k

)2

− m2

] [

(

P

2
− k

)2

− m2

]

Φ(k, P ) = −
∫

d4k′

(2π)4
iK(k, k′;P ) Φ(k′, P ) (3)

1. Correspond à l’équation (1) de EPJA 27 (2006) 1

2. Il faut faire le lien avec la definition en QFT (Low)

Φ(x1, x2) =< 0|T{φ(x1)φ(x2)}|0 >

ou les champs sont écrtis en representation d’Heisenberg

1En fait il faut iΓ de chaque coté
2S = i∆, signe de ε toujours opposé a celui de m
3Ne correspond pas a Gross pag 600
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....E pur si muove ! 

solution of 

 How to get “a VNN” from LQCD 

In NRQM   (H0+V)Ψ=EΨ 
Obtain V from (E,Ψ) is a very delicate problem (*) 
Only solvable from the knowledge of (E,Ψ)  for all E + some conditions (locality) 
In QCD, V is not defined and there is no equivalent of Schrodinger eq. 

(*) K. Shadan et P.C. Sabatier, Inverse Problem in Quantum Scattering Theory,  Spinger Verlag 1977/2011  

So what ? 



   Phase shift from V(r)  in full QCD  
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Central NN potentiel (S wave) 

Coll. HAL QCD: Aoki, Doi, Hatsuda, Ikea, Ishii, Nemura, Sasaki, ....   

Not  "physical” because of mπ 

Not yet reliable because small L 
Runs are in progress with BMW confs 

IIIIII

One-pion exchangeI

II Multi-pions

III Repulsive core
Jastrow(1951)

Taketani et al.(1951)

Yiukawa(1935)

� One-pion exchange
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�repulsive
core

� Repulsive core
Jastrow  (1951)
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� Multi-pions
Taketani et al.
(1951)

Key features of the Nuclear force 

Modern high precision 
NN forces (90’s-)
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NN forces (90’s-)
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None of these calculations found a Yukawa like  
Rather an exponential which does’nt fit with any OBE model 



Despite of several ambiguities in the protocol 
 - "inversion"  
 - identification BS-Schrodinger 
 - Euclidean / Minkowski metric 

               - .... 
and the still rough approximations in LQCD (L,a,mq,..)  
It is a qualitatively important result: first trace of  ”NN interaction” from a 2 parameter QCD 
 
But will remain always qualitative, whatever the progress can be made  
 

The ambiguities of the method would be always greater than the required accuracy  
in nuclear physics calculation (spectroscopy and reactions)  

 
The VNN –  and they are badly needed in NRQM ! – would rather be provided by 
conventional boson-exchange or by QCD inspired EFT models 
 
Even in NRQM VNN is not “well defined”, in the sense that it is not unique  
There are families of “phase equivalent V” (not an observable !) 
 

Another history are the NN phase shifts.... 



   Phase shift from V(r)  in full QCD  

1S0

1S0

3S1

3S1

a=0.1 fm, L=2.9 fm

attraction
attraction

repulsion
repulsion

2011年5月11日水曜日

They are very well known experimentally 
They are well defined in LQCD (some ambiguities in the coupled channel Luscher method ?)  
LQCD must be able to reproduce them accurately if: mπ=140 MeV, a ”small", L large (mπL=5) 

We are still far from that…. but they can come fast (5 years ?)  



Hyperon-N and Hyperon-Hyperon Interaction  

LQCD can soon supply this lack of experimental results.... 
One  can always ”built”  phase-equivalent V (OBE or EFT) to insert in Schrodinger equation 
and study more complex systems 

The interplay of models (which remain necessary) and LQCD can be here very rich  

Rich experimental activity with hypernuclei and interest in understanding the S-role in n-stars 

Octet Baryon interactions 

!"#$%&'()*+,-.'!,/,01'

• no phase shift available for  
  YN and YY scattering
• plenty of hyper-nucleus data will be
  soon available at J-PARC

• prediction from lattice QCD  
• difference between NN and YN ?

Λ Λ Λ

also in GSI

2011年5月11日水曜日

The Y-N phase shifts are well defined in LQCD and can be reliably calculated - even more than 
the NN ones - for the dominant states in low energy physics (L=0,1,2)  
… provided mπ=140 MeV, a ”small” and mπL=5 

However the Hyperon-N is poorly known 
…and will remain “always” so, since low energy monokinetic hyperon beams will hardly come  
Not to talk about Y targets… 



HADRON STRUCTURE!



Hadron Structure observables 

During its propagation in euclidean time (tfçti) , N interacts with an external source. 
Computing this amplitude in the Lattice provides ”generalized form factors” and related 
quantities (gAµN, F1,F2/GE,GM (<r2>), GPD) 

Only 3 lattice groupes computed these quantities (unquenched) with « reasonable » mπ values 
 

 LHPC   last results in  Bratt et al,  PRD82, 094502 (2010)  
 

 ETMC   Nf=2 results in  Alexandrou et al, PRD83, 114513 (2011)  
   Nf=2+1+1 in  Alexandrou et al, arXiv:1303.5979 

 
 QCDSF-UKQCD  last results in  Collins et al, PRD84, 074507 (2011)  

 
+ recent isolated works concentrated in particular problems gA, <r2>,<x> 
 

 Untill now none of the results is fully "satisfactory" 
 
 
***  The computed quantities are the isovector (T=1) components, which are free from the disconnected contibutions 
      They are compared to the corresponding  experimental data  *** 



How to compute form factors  ? 

if 

Create N at      xi 
 
Interact at         x    
 
Annihilate N at  xf 

Compute the 3-point Green function points (xf,x,xi) 

if 

         means TF 
ti<<t,tf>>t, to avoid excited states contamination, Lorentz…. 

With a well chosen combination of  “traces and projections,  FF are extracted 



The simplest observable: gA!

- Axial form factor at Q=0 

 
 
- No Q dependence (avoiding hypercubic artefacts) 

- Renormalization constant ZA well determined non pertubatively 
 
- No disconected diagrams 
 
…. Well known experimentaly gA=1.267 

2

(!x, t)

(!xi, ti)

!q = !p′ − !p

OΓ

(!xf , tf )

FIG. 1: Connected nucleon three-point function.

where τa are the Pauli matrices acting in flavor space,
ψ denotes the quark doublet with components the up-
and down-quarks. In this work we consider the isovector
combination by taking a = 3, except when we discuss
the spin fraction carried by each quark. Furthermore, we
limit ourselves to n = 1 and n = 2. The case n = 1
reduces to the nucleon form factors of the vector and
axial-vector currents, while n = 2 correspond to matrix
elements of operators with a single derivative. The curly
brackets represent a symmetrization over indices and sub-
traction of traces, only applicable to the operators with
derivatives. There are well developed methods to com-
pute the so called connected diagram, depicted in Fig. 1,
contributing to the matrix elements of these operators
in LQCD. Each operator can be decomposed in terms of
generalized form factors (GFFs) as follows: The matrix
element of the local vector current, Oµ

V 3 , is expressed as
a function of the Dirac and Pauli form factors

〈N(p′, s′)|Oµ
V 3 |N(p, s)〉 =

ūN(p′, s′)

[

γµF1(q
2) +

iσµνqν
2mN

F2(q
2)

]

1

2
uN (p, s) ,

where uN (p, s) denote the nucleon spinors of a given mo-
mentum p and spin s. F1(0) measures the nucleon charge
while F2(0) measures the anomalous magnetic moment.
They are connected to the electric, GE , and magnetic,
GM , Sachs form factors by the relations

GE(q
2) = F1(q

2) +
q2

(2mN)2
F2(q

2)

GM (q2) = F1(q
2) + F2(q

2) . (3)

The local axial current matrix element of the nucleon
〈N(p′, s′)|Oµ

A3 |N(p, s)〉 can be expressed in terms of the
form factors GA and Gp as

〈N(p′, s′)|Oµ
A3 |N(p, s)〉 =

ūN (p′, s′)

[

GA(q
2)γµγ5+

qµγ5
2mN

Gp(q
2)

]

1

2
uN(p, s) .(4)

The matrix elements of the one derivative op-
erators are parameterized in terms of the GFFs
A20(q2), B20(q2), C20(q2), and Ã20(q2) and B̃20(q2) for
the vector and axial-vector operators respectively, ac-
cording to

〈N(p′, s′)|Oµν
V 3 |N(p, s)〉 = ūN (p′, s′)

[

A20(q
2) γ{µP ν}+B20(q

2)
iσ{µαqαP ν}

2m
+ C20(q

2)
1

m
q{µqν}

]1

2
uN(p, s) , (5)

〈N(p′, s′)|Oµν
A3 |N(p, s)〉 = ūN (p′, s′)

[

Ã20(q
2) γ{µP ν}γ5 + B̃20(q

2)
q{µP ν}

2m
γ5

]1

2
uN(p, s) . (6)

Note that the GFFs depend only on the momentum
transfer squared, q2 = (p′ − p)2, p′ is the final and p
the initial momentum. The isospin limit corresponds
to taking τ3/2 in Eq. (2) and gives the form factor
of the proton minus the form factors of the neutron.
In the forward limit we thus have GE(0) = 1 and
GM (0) = µp − µn − 1 = 3.7 [21], which is the isovec-
tor anomalous magnetic moment. Similarly, we obtain
the nucleon axial charge, GA(0) ≡ gA, the isovector mo-
mentum fraction, A20(0) ≡ 〈x〉u−d and the moment of
the polarized quark distribution, Ã20(0) ≡ 〈x〉∆u−∆d. In
order, to find the spin and angular momentum carried
by each quark individually in the nucleon we need the
isoscalar axial charge and the isoscalar one-derivative ma-

trix elements of the vector operator. Unlike the isovector
combinations, where disconnected fermion loops vanish
in the continuum limit, the isoscalar cases receive con-
tributions from disconnected fermion loops. These con-
tributions are believed to be small and are usually ne-
glected. Their evaluation is difficult due to the compu-
tational cost but techniques are being developed to com-
pute them [22]. If one assumes that the disconnected
contributions are small, it is straightforward to evaluate
the isoscalar matrix elements taking into account only
the connected part depicted in Fig. 1. The quark con-
tribution to the nucleon spin is obtained using Ji’s sum
rule: Jq = 1

2 [A
q
20(0)+Bq

20(0)]. Moreover, using the axial
charge for each quark, gqA, we obtain the intrinsic spin



when data points at Q2 > 0:4 GeV2 are included in the
plot. For !v we find that the results on the two volumes
deviate systematically, but are still compatible taking into
account their statistical uncertainty.

We can also scrutinize this behavior by looking at the
form factors as a function of Q2 directly and compare the
location of the points on the two volumes. Figure 8 shows
this comparison. The solid curves are dipole fits to all
available data points. It is evident that their dipole masses
are different, but the data points at small Q2 are identical.
The difference in curvature is caused only by points
beyond that.

We conclude that we observe finite-size effects in our
lattice form-factor data. However, the finite-size effects are
significant only for intermediate values ofQ2. Based on the
smallest values of Q2, the Dirac and Pauli radii may be
identical on both volumes. We did not find a satisfactory
explanation based on chiral expansions or models at this
point and leave this matter for future investigations.

As a final remark, in Sec. IVD wewill compare the radii
defined by the generalized form factors. There we will also
find suggestive evidence that the mass radius is larger on
the larger volume. Here our intention was to illustrate our
observation of finite-volume effects with the data that are
most accurate.

IV. RESULTS

A. The axial charge

In this section we present new data on the nucleon axial
charge gA. Although axial form factors are discussed in
more depth below in Sec. IVC, the fundamental phenome-
nological importance of the axial charge warrants high-
lighting our new results for this observable already at this
point. Aside from the changes in technology described in
Sec. III, our calculation follows closely the methods of
Ref. [4]. In particular we use the local axial current for the
calculation, and the five-dimensional axial current is used

to determine the normalization of the local current, as
described in detail at the beginning of Sec. IVC.
The new data are displayed in Fig. 9. The value of gA is

remarkably independent of the pion mass, and lies at a value
(8–10)% lower than the experimental value of 1.2695(29),
while statistical errors are less than 2%. A naive extrapola-
tion linear in m2

" of the m" < 500 MeV data leads to
gAðm"Þ ¼ 1:153ð28Þ. We will discuss below what differ-
ence more sophisticated chiral effective theory fits make.
It is worth describing to what extent the situation has

changed since the calculation [4]. In the latter, less accurate
calculation, the lattice data also showed a very mild pion-
mass dependence. Using a 3-parameter fit based on the
leading one-loop pion-mass dependence in the SSE at
finite-volume leads to the value gAðm" ¼ 140 MeVÞ ¼
1:226ð84Þ. The finite-volume effects predicted by the for-
mula at the simulation points were found to be negligible
compared to the statistical errors. The largest pion mass
included in the fit was 760 MeV, and the lightest 356 MeV.
Thanks to the new, higher statistics data, we control the

finite-volume effects to a higher level of accuracy. Indeed,
fitting the 203 and 283 gA plateau at am ¼ 0:010 (see
Fig. 3) leads to the bound

m"¼356MeV:

jgAðL¼3:5 fmÞ$gAðL¼2:5 fmÞj<0:045

ð95%conf: lev:Þ: (28)

To further tighten this statement, we want to constrain the
possibility that the plateau for gA could be affected by
different excited state contributions on the two volumes.
Indeed, even if the nucleon mass has a weak volume
dependence for L % 2:5 fm [see Eq. (27)], the energy of
the first excited state in that symmetry channel could
a priori have a significant volume dependence: in large
volume we expect it to be a nucleon and a pion with a
nonvanishing relative momentum. However, comparing
the local effective mass on the 203 and 283 lattices,
Fig. 5, we see good agreement between them (the same
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FIG. 9 (color online). SSE fit to the axial charge. Left: three-parameter fit with m" < 500 MeV. Right: two-parameter fit with
m" < 360 MeV.
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Exemple: Axial charge   gA=1.27  (LHPC)   

The computed values are practicaly independent of mπ 
 
« Naive » linear extrapolation gives 1.153(28) 
 
Using chiral extrapolations (2-3 parameters) the value is compatible with experimental data 
… in fact extrapolation is out of control !  

gA=GA(q2=0) 
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Raisonnable 1.15(1) …but 10% of (uncontrolled) error 
 

ETMC axial forme factor gA 
 



Including nf=2+1+1 ETMC results (Alexandrou et al 2013 arXiv:1303.5979) 
 
Looking from far enough it looks nice ! 
 

Introduction
Free Sink Analysis

GEVP
Summary

Source-sink separation dependence of gA

results for gA by ETMC
Nf = 2 and Nf = 2 + 1 + 1

statistics � 500
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excited state contribution negligible!

S. Dinter Excited State Effects

But gA=1 is somehow trivial  



ETMC:  Taking continuum limit and V-corrected results 
 
ZA determined non perturbatively (RI-MOM)   

g
A

=1.12(8) 

Nucleon generalized form factors using TMF M. Constantinou

Figure 1: Left: Results on gA as a function of the pion mass squared using TMF, DWF and domain
wall valence on a staggered sea (hybrid). Right: gA obtained by taking the continuum limit of the volume
corrected TMF data. The shaded area is the best chiral fit to the data shown on the graph.

Figure 2: GE and GM at mπ ∼300 MeV (left) and GA and Gp (right) for various lattice actions. The filled
(green) circles show experimental data on GE and GM . The solid line on the right panel is a dipole fit to
experimental data for GA(Q2) combined with pion pole dominance to get the solid curve shown for Gp(Q2).

In Fig. 2 we show the isovector electric and magnetic form factors at mπ ∼ 300 MeV as a
function of the momentum transfer squared. We compare our results with results using other O(a)
improved actions at the same pion mass [8, 10, 11]. The results are in agreement in the case of GE ,
while in the case of GM clover results from Ref. [10] are lower. In the same figure we also show
TMF results on the two axial-vector form factors and we compare with DWF at mπ = 330 MeV [4]
and hybrid results by LHPC at mπ = 356 MeV [8] on a lattice with L = 3.5 fm. The results are in
agreement in the case of GA(Q2), while in the case of Gp(Q2) there are discrepancies at low Q2

values, which may indicate that volume effects are not negligible on form factors such as Gp(Q2)
which are strongly affected by the pion-pole.

3

including a dynamical strange quark are also available
within the twisted mass formulation. Comparison of the
nucleon mass obtained with two dynamical flavors and the
nucleon mass including a dynamical strange quark has
shown negligible dependence on the dynamical strange
quark [16]. We therefore expect the results on the nucleon
form factors to show little sensitivity on a dynamical
strange quark as well.

The axial current matrix element of the nucleon
hNðp0; s0ÞjAa

!ð0ÞjNðp; sÞi can be expressed in terms of the
form factors GA and Gp as

hNðp0; s0ÞjA3
!jNðp; sÞi ¼ i

!
m2

N

ENðp0ÞENðpÞ

"
1=2

!uNðp0; s0Þ

$
#
GAðq2Þ"!"5 þ

q!"5

2mN
Gpðq2Þ

$
1

2
uNðp; sÞ: (4)

where uNðp; sÞ denotes the nucleon spinor.
In this work we consider simulations at three values of

the coupling constant spanning lattice spacings from about
0.05 fm to 0.09 fm. This enables us to obtain results in the
continuum limit. We find that cutoff effects are small for
this range of lattice spacings. We also examine finite size
effects on the axial form factors by comparing results on
two lattices of spatial length L ¼ 2:1 fm and L ¼ 2:8 fm
[17–19].

II. LATTICE EVALUATION

A. Correlation functions

The proton interpolating field in the physical basis is
given by

JðxÞ ¼ #abc½ua>ðxÞC"5d
bðxÞ'ucðxÞ (5)

and can be written in the twisted basis at maximal twist as

~JðxÞ ¼ 1ffiffiffi
2

p ½1þ i"5'#abc½~ua>ðxÞC"5
~dbðxÞ'~ucðxÞ: (6)

The transformation of the axial vector current, Aa
!ðxÞ, to

the twisted basis leaves the form of A3
!ðxÞ unchanged. The

axial renormalization constant ZA is determined nonper-
turbatively in the RI’-MOM scheme using two approaches
[20–23] both of which yield consistent values. We use the
values of ZA found in the latter approach [22], which
employs a momentum source [24] and a perturbative sub-
traction of Oða2Þ terms [25,26]. This subtracts the leading
cutoff effects yielding only a very weak dependence of ZA

on ðapÞ2 for which the ðapÞ2 ! 0 limit can be reliably
taken. It was also shown with high accuracy that the quark
mass dependence of ZA is negligible. We find the values

ZA ¼ 0:757ð3Þ; 0:776ð3Þ; 0:789ð3Þ (7)

at $ ¼ 3:9, 4.05 and 4.2, respectively. For comparison, the
values obtained in Ref. [21] are

ZA ¼ 0:746ð6Þ; 0:772ð6Þ (8)

for $ ¼ 3:9 and $ ¼ 4:05, respectively. In this work we
use the values forZA given in Eq. (7).
In order to increase the overlap with the proton state and

decrease overlap with excited states we use Gaussian
smeared quark fields [27,28] for the construction of the
interpolating fields:

qasmearðt; ~xÞ ¼
X

~y

Fabð ~x; ~y;UðtÞÞqbðt; ~yÞ;

F ¼ ð1þ %HÞn;

Hð ~x; ~y;UðtÞÞ ¼
X3

i¼1

½UiðxÞ&x;y({̂ þUy
i ðx( {̂Þ&x;yþ{̂': (9)

In addition, we apply APE-smearing to the gauge fieldsU!

entering the hopping matrix H. The smearing parameters
are the same as those used for our calculation of baryon
masses with % and n optimized for the nucleon ground
state [13]. The values are % ¼ 4:0 and n ¼ 50, 70 and 90
for $ ¼ 3:9, 4.05 and 4.2, respectively.
In order to calculate the nucleon matrix element of

Eq. (4) we calculate the two-point and three-point func-
tions defined by

Gð ~q;tfÞ¼
X

~xf

e(i ~xf) ~q"0
$%hJ%ðtf; ~xfÞ !J$ðti; ~xiÞi

G!ð"'; ~q;tÞ¼
X

~x; ~xf

ei ~x) ~q"'
$%hJ%ðtf; ~xfÞA!ðt; ~xÞ !J$ðti; ~xiÞi; (10)

where "0 and "k are the projection matrices:

"0 ¼ 1

4
ð1þ "0Þ; "k ¼ i"0"5"k: (11)

The kinematical setup that we used is illustrated in Fig. 1:
We create the nucleon at ti ¼ 0, at ~xi ¼ 0 (source) and
annihilate it at a later time tf with ~p0 ¼ 0 (sink). The current
couples to a quark at an intermediate time t. For our kine-
matics ~q ¼ ( ~p. From now on all quantities are given in
Euclidean space and where Q2 ¼ (q2 is the Euclidean
momentum transfer squared. The leading time dependence
of the Euclidean time evolution and the overlap factors
cancel in the ratio

R!ð"; ~q; tÞ ¼ G!ð"; ~q; tÞ
Gð~0; tfÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gð ~pi; tf ( tÞGð~0; tÞGð~0; tfÞ
Gð~0; tf ( tÞGð ~pi; tÞGð ~pi; tfÞ

vuuut ;

(12)

yielding a time-independent quantity

lim
tf(t!1

lim
t(ti!1

R!ð"; ~q; tÞ ¼ #!ð"; ~qÞ: (13)

We refer to the range of t-values where this asymptotic
behavior is observed within our statistical precision as the
plateau range. As mentioned already, only the connected
diagram contributes. It is calculated by performing sequen-
tial inversions through the sink yielding the form factors at

C. ALEXANDROU et al. PHYSICAL REVIEW D 83, 045010 (2011)
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β=1.95 β=2.10

ZV 0.625(2) 0.664(1)

ZA 0.757(3) 0.771(2)

Zµµ
DV 1.019(4) 1.048(5)

Zµ!=ν
DV 1.053(11) 1.105(4)

Zµµ
DA 1.086(3) 1.112(5)

Zµ!=ν
DA 1.105(2) 1.119(6)

TABLE III: Renormalization constants in the chiral limit at
β = 1.95 and β = 2.10 in the MS-scheme at µ = 2 GeV.

malize the lattice matrix elements. The numbers in the
parenthesis correspond to the statistical error. Our full
results for the renormalization functions of the fermion
field, local and one derivative bilinears along with the
systematic error analysis will appear in a separate pub-
lication.

III. LATTICE RESULTS

In this section we present our results on the nucleon
electromagnetic form factors, GE(Q2) and GM (Q2), and
the axial-vector form factors, GA(Q2) and Gp(Q2). We
also show the n = 2 generalized form factors for the
one-derivative vector operator, A20(Q2), B20(Q2) and
C20(Q2), and the one-derivative axial-vector oprator,
Ã20(Q2) and B̃20(Q2). The numerical values are given
in the Tables in Appendix A. The dependence of these
quantities on the momentum transfer square, Q2, the lat-
tice spacing, as well as on the pion mass is examined.
We also compare with recent results from other collabo-
rations.
As we already mentioned, most of the results are ob-

tained for isovector quantities. For the renormalized nu-
cleon matrix element of the operators with up to one
derivative we thus consider

ūγ{µ
↔
Dν} u − d̄γ{µ

↔
Dν} d ,

ūγ5 γ{µ
↔
Dν} u − d̄γ5 γ{µ

↔
Dν} d ,

in the MS scheme at a scale µ = 2 GeV. Note that the lo-
cal vector and axial-vector operators are renormalization
scale independent, thus the conversion to the MS scheme
is irrelevant.
In order to study the spin content of the nucleon we

also compute the isoscalar matrix elements of the one-
derivative vector operator, as well as, the isoscalar axial
charge assuming, in all cases, that the disconnected con-
tributions are negligible.

A. Nucleon form factors

In Fig. 6 we present our results for the axial charge
gA ≡ GA(0) using Nf=2 and Nf=2+1+1 twisted mass

fermions. These are computed at different lattice spac-
ings ranging from a ∼ 0.1 fm to a ∼ 0.06 fm. As can
be seen, no sizable cut-off effects are observed. Lattice
data computed using different volumes are also consistent
down to pion masses of about 300 MeV, where we have
different volumes. In a nutshell, our results do not indi-
cate volume or cut-off effects larger than our current sta-
tistical errors. A dedicated high statistics analysis using
the Nf=2+1+1 ensemble at mπ = 354 MeV has shown
that contributions from excited states are negligible for
gA [33, 34]. In recent studies, the so called summation
method, that sums over the time-slice t where the current
is inserted, is used as an approach that better suppresses
excited state contributions [44]. Using this method to
analyze lattice results at near physical pion mass it was
demonstrated that, in fact, the value of gA decreases [7].
These studies thus indicate that the source of the dis-
crepancy does not seem to come from excited states con-
tamination.

FIG. 6: Results for the nucleon axial charge with (i) Nf=2
twisted mass fermions with a = 0.089 fm (filled red circles
for L = 2.1 fm and filled blue squares for L = 2.8 fm), a =
0.070 fm (filled green triangles), and a = 0.056 fm (open star
for L = 2.7 fm and open square for L = 1.8 fm) [3] (ii)
Nf=2+1+1 twisted mass fermions with a = 0.086 fm (open
circle) and a = 0.066 fm (square with a cross). The asterisk
is the physical value as given in the PDG [21].

In Fig. 7 we compare our results to other recent lat-
tice QCD data obtained with different actions. We show
results obtained using domain wall fermions (DWF) [5],
clover fermions [48], a mixed action with 2+1 flavors of
asqtad-improved staggered sea and domain wall valence
fermions [45] referred to as hybrid, and Nf=2+1 of tree-
level clover-improved Wilson fermions coupled to dou-
ble HEX-smeared gauge fields [7, 47]. We observe that
all these lattice results are compatible. This agreement
corroborates the fact that cut-off effects are negligible
since these lattice data are obtained with different dis-
cretized actions without being extrapolated to the con-
tinuum limit. The recent result of Ref. [47] at almost
physical pion mass shows about 10% deviation from the

No  « cut-off » or V-effects 
No contamination  
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a possible explanation of the <x> and gA discrepancies 
Done in ETMC Nf=2+1+1 and mπ=380 MeV 
 
- No effect of excited state contamination in gA 
- 10% improvement on <x> 

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

11 12 13 14 15 16 17 18 19

g A

tsink/a

fixed sink method, tsink = 12a
PDG

open sink method

Figure 3: Results for gA for a range of source-sink separations obtained from the open

sink analysis on one Nf = 2 + 1 + 1 ensemble. The light grey band indicates the result

obtained from the fixed sink method using a source-sink separation of 12a and the dark

grey band shows the experimental value.

source-sink separation in order to assess the influence of excited states on
the current lattice results for g

A

and hxi
u�d

. This is particularly important
given that excited states may play a role in explaining the presently observed
discrepancy between lattice computations and phenomenological evaluations
of several important nucleon observables.

We find that for the here considered pion mass of about 380 MeV and
lattice spacing of a ⇡ 0.078 fm, the contamination of excited states is neg-
ligible for g

A

, but for hxi
u�d

, the e↵ect is of the order of 10% compared
to our previous calculations, where the source-sink separation has been set
to about 1 fm. This is an e↵ect larger than the finite volume and lattice
spacing e↵ects we observe at this value of the pion mass, volume and lat-
tice spacing. Moreover, this demonstrates that contributions from excited
states are operator dependent and should be investigated separately for each
operator.

One way to better control excited state e↵ects is to use a variational
method such as the generalized eigenvalue method [17, 18]. Recently, a
new approach to deal with excited state contamination of hadronic matrix

11
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<
x
>
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tsink/a

fixed sink method, tsink = 12a
ABMK

fit
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Figure 4: Results for hxiu�d for a range of source-sink separations obtained by means of

the open sink method. The operator insertion was at a temporal separation from the source

of t

0
= 11a. The value (including errors) obtained from the fixed sink method using a

source-sink separation of 12a is indicated by the light grey band. The phenomenologically

extracted value is shown with the dark grey band. The blue solid line corresponds to a fit

described in the text.

elements has been developed and applied for the B⇤B⇡ coupling in ref. [19].
Whether the generalized eigenvalue method can improve the calculation of
matrix elements of the nucleon needs still to be tested, though.

However, if the 10% shift for hxi
u�d

as we found here persists at smaller
pion masses, excited state e↵ects can not be the single dominating system-
atic e↵ect responsible for the tension between lattice and phenomenology.
Of course, we cannot exclude that at smaller values of the pion mass excited
state e↵ects might become significantly larger. Therefore, in order to clarify
the deviation between lattice calculations and experimental determinations
of nucleon matrix elements, a very careful and accurate analysis of system-
atic errors will be needed, taking into account the possible contamination of
excited states as observed in this work.

12
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FIG. 7: The nucleon axial charge for twisted mass fermions,
Nf=2 (filled red circles) and Nf=2+1+1 (filled blue squares),
as well as, results using other lattice actions: Filled (green)
triangles correspond to a mixed action with 2+1 flavors of
staggered sea and domain wall valence fermions [45], crosses
to Nf=2+1 domain wall fermions [5], open triangles to Nf=2
clover fermions [46] and open (cyan) circles to Nf=2+1 of
tree-level clover-improved Wilson fermions coupled to double
HEX-smeared gauge fields [47].

FIG. 8: The nucleon axial charge for twisted mass fermions
(Nf=2 and Nf=2+1+1), as well as results using other lat-
tice actions versus Lmπ. Black symbols denote results at
almost physical pion mass obtained using Nf=2 [46] and
Nf=2+1 [47] clover fermions. The rest of the notation is
the same as that in Fig. 7.

physical value of gexpA = 1.267 [21]. This is a well-known
puzzle and various directions have been explored to iden-
tify the source of the discrepancy [33, 34, 48, 49]. In Fig. 7
we also include the recent results obtained using Nf=2
clover fermions at three lattice spacings a = 0.076 fm,
0.071 fm and 0.060 fm [46]. They include a result at al-
most physical pion mass, which is clearly higher than the
corresponding one obtained in Ref. [47]. As already re-
marked, the latter was shown to even decrease if one uses
the summation method [7]. In Ref. [46] it is argued that

volume corrections are sizable and increase the value of
gA. We note that all lattice data shown in Fig. 7 are not
volume corrected. In order to assess, which of these re-
sults would suffer from large volume corrections we show
in Fig. 8 gA as a function of Lmπ. The data points
at almost physical pion mass are shown with the black
symbols. The result from Ref. [47] at Lmπ = 4.2 is lower
than the one from Ref. [46] at Lmπ = 2.74. Thus volume
effects alone may not account for the whole discrepancy
and therefore, there is still an open issue in the evaluation
of gA.
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FIG. 9: Comparison of the Nf=2+1+1 twisted mass data on
GA(Q

2) (upper) and Gp(Q
2) (lower) for the two different pion

masses considered. Filled blue squares correspond to β = 2.10
and mπ = 210 MeV, while filled red circles correspond to
β = 1.95 and mπ = 354 MeV. The dashed lines are the dipole
fits on the lattice data, while the solid green line is the dipole
fit of experimental data for GA(Q2) [50] in combination with
pion-pole dominance for Gp(Q

2).

Next, we study the dependence of the axial form fac-
tors on the momentum transfer,Q2. In Fig. 9 we compare
our Nf=2+1+1 results for GA(Q2) and Gp(Q2) as the
pion mass decreases from 354 MeV to 210 MeV. As can
be seen, the dependence on the pion mass is very weak
for GA(Q2) whereas for Gp(Q2) a stronger dependence
is observed in particular at low Q2. This is not surpris-
ing since Gp(Q2) is expected to have a pion-pole depen-
dence that dominates its Q2-dependence as Q2 → 0. The
solid line is the result of a dipole fit to the experimental
electroproduction data for GA(Q2). Assuming pion-pole
dominance we can deduce from the fit to the experimen-
tal data on GA(Q2) the expected behavior for Gp(Q2),
shown in Fig. 9. As can be seen, both quantities have a
smaller slope with respect to Q2 than what is extracted
from experiment. Such a behavior is common to all the
nucleon form factors and it remains to be further inves-
tigated if reducing even more the pion mass will resolve
this discrepancy. The Q2-dependence of the lattice QCD
data for GA(Q2) can be well parameterized by dipole
Ansatz of the form

GA(Q
2) =

gA

(1 +Q2/m2
A)

2 , (22)

Summary of the last LQCD results (from Alexandrou et al ) 
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The computed values are compatible with a dipole form … but with a too compact N  ! 
 

nucleon interpolating operator is used on both volumes).
We conclude that the contamination of the first excited
state does not increase significantly with the volume. In
particular, the bound (28) on the gA finite-size effects is
robust. While a nonmonotonic volume dependence of gA
that would make the difference in Eq. (28) accidentally
small cannot be excluded, this bound strongly constrains
how much of the discrepancy between the lattice data and
the experimental value of gA can be attributed to finite-
volume effects.

As mentioned above, a naive extrapolation linear in m2
!

of our lattice data leads to values of gAðm!Þ about 10%
lower than the phenomenological value. We now proceed
with the fit ansatz provided by the SSE framework [50],

gAðm!Þ¼gA$
g3Am

2
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16!2f2!
þ4m2
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Cð"Þþ c2A
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972
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gA
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m!

"
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þ 4c2AgA
27!f2!!

m3
!

þ8c2AgAm
2
!

27!2f2!

"
1$m2

!

!2

#
1=2

logRðm!Þþ
c2A!

2

81!2f2!

&ð25g1$57gAÞ
!
log

2!

m!
$
"
1$m2

!

!2

#
1=2

& logRðm!Þ
$
; (29)

with g1 the axial-delta-delta coupling, cA the axial-
nucleon-delta coupling, and ! denoting the delta-nucleon
mass splitting, in the chiral limit. Following [50], we define
the function

RðmÞ ¼ !

m
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2

m2 $ 1

s
: (30)

When the! baryon is below threshold, as is the case in our

lattice calculations,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2 $m2

!

p
logRðm!Þ is substituted by

$
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

! $!2
p

arccosð!=m!Þ. A three-parameter SSE fit to
our data at pion masses below 500 MeV with a fixed value
of cA ¼ 1:5—a motivation for this choice is given in
Ref. [9]—gives (see left panel of Fig. 9),

g0A ¼ 1:22ð17Þ; g1 ¼ 3:9ð3:0Þ: (31)

The result thus does increase as the pion mass is lowered,
but becomes consistent only with the phenomenological
value by virtue of its uncertainty also rising significantly.
As an alternative, we perform a two-parameter fit to m! <
360 MeV, where we fix the value of g1 to 2.5, close to the
SUð4Þ spin-flavor quark symmetry prediction 9=5gA. This
fit is illustrated on the right panel of Fig. 9. Here the result
for gA is slightly lower than in the three-parameter fit, and
the error bar barely extends to the phenomenological value.

As has already been mentioned above, our previous
calculation of gA in Ref. [4] included data points at larger
pion masses in the fit—as a result of which it has a smaller
statistical uncertainty for the extrapolated value. Another

calculation in Ref. [5] contains only pion masses larger
than 500 MeV. A discussion of the range of validity of one
chiral expansion scheme in Ref. [51] concludes that lattice
data below pion masses of 300 MeV are necessary for a
reliable prediction. Reference [52] observes a bending
down of the extrapolation due to the data point at the
smallest available pion mass in that calculation, m! ¼
331 MeV. This is above our smallest mass. However, our
smallest pion-mass data point has a larger error bar and is
just consistent with the one from Ref. [52]; it may be the
case that at this parameter the data are already affected by
finite-volume effects—a possibility also mentioned in that
paper. This interpretation is supported by the observation
that the other data points at larger pion masses tend to be
systematically higher than our data points. However, at our
data point at m! ¼ 356 MeV we do not find any evidence
of finite-volume effects which indicates that at lighter pion
mass these effects would have to set in rather quickly.
While in the present work we find no significant evi-

dence for a pion-mass dependence of gA, our data are
simultaneously compatible with the possibility that the
functional form predicted by the small-scale expansion
applies below m! ¼ 350 MeV and with the phenomeno-
logical value of gA.

B. Electromagnetic form factors

The matrix element of the electromagnetic current
between nucleon states can be parametrized in terms of
two form factors. Common choices are the Dirac and Pauli
form factors, F1ðQ2Þ and F2ðQ2Þ, and the electric and
magnetic Sachs form factors, GEðQ2Þ and GMðQ2Þ. The
former directly correspond to the form factors A10ðQ2Þ and
B10ðQ2Þ from Eq. (6). The latter are related by a simple
linear transformation to the isovector Dirac and Pauli form
factors, Fv

1 ðQ2Þ and Fv
2 ðQ2Þ:

GEðQ2Þ ¼ Fv
1 ðQ2Þ $ Q2

ð2mNÞ2
Fv
2 ðQ2Þ; (32)

GMðQ2Þ ¼ Fv
1 ðQ2Þ þ Fv

2 ðQ2Þ: (33)

We will also use the standard notation for the anomalous
magnetic moment of the nucleon in units of e=2mNðm!Þ,

$v ¼ Fv
2 ð0Þ: (34)

When performing chiral fits we will work with

$norm
v ¼ mphys

N

mNðm!Þ
$v; (35)

which represents the isovector anomalous magnetic

moment in units of the physical Bohr magneton, e=2mphys
N .

We use the ultralocal discretizations of the dimension
three quark bilinear operators; i.e. their support is a single
lattice site. Because of quantum effects the matrix elements
of these lattice operators are not trivially renormalized,
and we have to apply renormalization constants to them.
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nucleon interpolating operator is used on both volumes).
We conclude that the contamination of the first excited
state does not increase significantly with the volume. In
particular, the bound (28) on the gA finite-size effects is
robust. While a nonmonotonic volume dependence of gA
that would make the difference in Eq. (28) accidentally
small cannot be excluded, this bound strongly constrains
how much of the discrepancy between the lattice data and
the experimental value of gA can be attributed to finite-
volume effects.

As mentioned above, a naive extrapolation linear in m2
!

of our lattice data leads to values of gAðm!Þ about 10%
lower than the phenomenological value. We now proceed
with the fit ansatz provided by the SSE framework [50],
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with g1 the axial-delta-delta coupling, cA the axial-
nucleon-delta coupling, and ! denoting the delta-nucleon
mass splitting, in the chiral limit. Following [50], we define
the function

RðmÞ ¼ !

m
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2

m2 $ 1

s
: (30)

When the! baryon is below threshold, as is the case in our

lattice calculations,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2 $m2

!

p
logRðm!Þ is substituted by

$
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

! $!2
p

arccosð!=m!Þ. A three-parameter SSE fit to
our data at pion masses below 500 MeV with a fixed value
of cA ¼ 1:5—a motivation for this choice is given in
Ref. [9]—gives (see left panel of Fig. 9),

g0A ¼ 1:22ð17Þ; g1 ¼ 3:9ð3:0Þ: (31)

The result thus does increase as the pion mass is lowered,
but becomes consistent only with the phenomenological
value by virtue of its uncertainty also rising significantly.
As an alternative, we perform a two-parameter fit to m! <
360 MeV, where we fix the value of g1 to 2.5, close to the
SUð4Þ spin-flavor quark symmetry prediction 9=5gA. This
fit is illustrated on the right panel of Fig. 9. Here the result
for gA is slightly lower than in the three-parameter fit, and
the error bar barely extends to the phenomenological value.

As has already been mentioned above, our previous
calculation of gA in Ref. [4] included data points at larger
pion masses in the fit—as a result of which it has a smaller
statistical uncertainty for the extrapolated value. Another

calculation in Ref. [5] contains only pion masses larger
than 500 MeV. A discussion of the range of validity of one
chiral expansion scheme in Ref. [51] concludes that lattice
data below pion masses of 300 MeV are necessary for a
reliable prediction. Reference [52] observes a bending
down of the extrapolation due to the data point at the
smallest available pion mass in that calculation, m! ¼
331 MeV. This is above our smallest mass. However, our
smallest pion-mass data point has a larger error bar and is
just consistent with the one from Ref. [52]; it may be the
case that at this parameter the data are already affected by
finite-volume effects—a possibility also mentioned in that
paper. This interpretation is supported by the observation
that the other data points at larger pion masses tend to be
systematically higher than our data points. However, at our
data point at m! ¼ 356 MeV we do not find any evidence
of finite-volume effects which indicates that at lighter pion
mass these effects would have to set in rather quickly.
While in the present work we find no significant evi-

dence for a pion-mass dependence of gA, our data are
simultaneously compatible with the possibility that the
functional form predicted by the small-scale expansion
applies below m! ¼ 350 MeV and with the phenomeno-
logical value of gA.

B. Electromagnetic form factors

The matrix element of the electromagnetic current
between nucleon states can be parametrized in terms of
two form factors. Common choices are the Dirac and Pauli
form factors, F1ðQ2Þ and F2ðQ2Þ, and the electric and
magnetic Sachs form factors, GEðQ2Þ and GMðQ2Þ. The
former directly correspond to the form factors A10ðQ2Þ and
B10ðQ2Þ from Eq. (6). The latter are related by a simple
linear transformation to the isovector Dirac and Pauli form
factors, Fv

1 ðQ2Þ and Fv
2 ðQ2Þ:

GEðQ2Þ ¼ Fv
1 ðQ2Þ $ Q2

ð2mNÞ2
Fv
2 ðQ2Þ; (32)

GMðQ2Þ ¼ Fv
1 ðQ2Þ þ Fv

2 ðQ2Þ: (33)

We will also use the standard notation for the anomalous
magnetic moment of the nucleon in units of e=2mNðm!Þ,

$v ¼ Fv
2 ð0Þ: (34)

When performing chiral fits we will work with

$norm
v ¼ mphys

N

mNðm!Þ
$v; (35)

which represents the isovector anomalous magnetic

moment in units of the physical Bohr magneton, e=2mphys
N .

We use the ultralocal discretizations of the dimension
three quark bilinear operators; i.e. their support is a single
lattice site. Because of quantum effects the matrix elements
of these lattice operators are not trivially renormalized,
and we have to apply renormalization constants to them.
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Since the forward matrix element hp;!j !c"#c jp;!i
counts the total number of quarks of type c and this
number is known by construction, we obtainZV by dividing
the unrenormalized isovector current in the forward case.
We point out that in the forward case the disconnected
contribution is exactly zero since the disconnected operator
cannot change the total number of quarks of any type. Thus,
the value for ZV obtained this way will be exact also if we
consider disconnected contributions in future work. The
resulting renormalization constants ZV for the vector cur-
rent are listed in Table V. The renormalization constants of
the axial current are discussed later in Sec. IVC.

To study the charge distribution of the nucleon at large
distances, it makes sense to consider the leading contribu-
tion of the form factors at small values ofQ2 [3]. The linear
coefficient of the small-Q2 expansion can serve as a mea-
sure of the nucleon size and is known as the mean squared
radius, hr2i i, where i labels the different Lorentz and flavor
structures one may consider:

FiðQ2Þ ¼ Fið0Þð1$ 1
6Q

2 % hr2i iþOðQ4ÞÞ: (36)

The radii, hr2i i, can also be extracted from experiment. For
a recent review see Ref. [53]. Although this is straightfor-
ward for the proton isovector Fv

1 ðQ2Þ form factor, a deter-
mination from fits to the experiment [54,55] turns out to be
inconsistent with an analysis based on dispersion theory
[56–58]. The latter radii are systematically larger than the
former. To resolve this discrepancy, a dedicated experiment
is currently being performed [59]. For the proton isovector
Fv
2 ðQ2Þ a different discrepancy has been found in recent

spin-transfer measurements [60–64]. The source of this
mismatch is generally believed to be two-photon exchange
processes [55], which is challenging to verify. On the
lattice, we can study these observables without any two-
photon contamination and thus make a significant contri-
bution toward resolving the discrepancy.

Section IVB discusses the results for the form factors of
the electromagnetic current. First, we study the isovector
Dirac form factor Fv

1 ðQ2Þ in Sec. IVB 1 and the isovector
Pauli form factor Fv

2 ðQ2Þ in Sec. IVB 2. The scaling be-
havior of form factors at larger values of Q2 is shown in
Sec. IVB 3. Section IVB4 discusses the Sachs parametri-
zation of form factors. Section IVB 5 discusses the slope of
the ratio Fd

1=F
u
1 ðQ2Þ to learn about the flavor dependence

of the form factors. The isoscalar form factors are shown
in Sec. IVB6. Section IVB 7 summarizes our findings.
Where applicable, we compare the chirally extrapolated
results to experiment.

1. Isovector Dirac form factor Fv
1 ðQ2Þ

This section covers the isovector Dirac form factor,
Fv
1 ðQ2Þ. Phenomenologically, this form factor is commonly

fit using a dipole form at fixed pion mass. We will thus first
attempt to fit Fv

1 ðQ2Þ using the dipole form and study the
stability of this fit as a function of the Q2 range. Next, we

will perform chiral fits using the SSE, Ref. [65], which
includes explicit "ð1232Þ degrees of freedom [66,67]. We
will first compare the expansion applied to the Dirac radii,
hr21i, obtained from the previous dipole fits. We will then
study the covariant baryon chiral perturbation theory ex-
pansion (BChPT) for the same quantity; see Refs. [9,68].
Finally, we will present SSE fits to the simultaneous Q2

and m$ dependence of our lattice data. The latter method
has the strong advantage that no reliance on the applica-
bility of the dipole form is assumed. For these fits we apply
the superjackknife and error-correlation matrix methods
discussed in Sec. III C. Thus, we believe that this fit strat-
egy is superior to the ones previously employed.

Dipole fits to isovector Fv
1 ðQ2Þ.—

In this section we discuss theQ2 dependence of the form
factors at fixed values of the pion mass, m$. The function
we will use throughout this section is the dipole formula,

Fv
1 ðQ2Þ ¼ A0=ð1þQ2=M2

dÞ2; (37)

with A0 fixing the overall normalization and Md being the
dipole mass. From Eqs. (37) and (36) it is immediately
obvious that the dipole mass is related to the Dirac radius
of Fv

1 ðQ2Þ via

hr21i ¼
12

M2
d

: (38)

In order to verify whether the functional form indeed allows
for a meaningful application of the dipole formula, we have
performed a series of fits in which we varied the fit interval
½Q2

min; Q
2
max( and listed the variation of the fit parameters.We

have restricted ourselves to the 283 lattice with pion mass
m$ ¼ 356 MeV. Results are summarized in Table VI. The
table shows the fit interval used, the resulting value of
%2=dof (degrees of freedom), the normalization A0—which
must be equal to onewithin precision due to the conservation
of the vector current—and the dipole mass, Md, together
with the resulting Dirac radius, hr21i. All error estimates have
been obtained by applying the jackknife method to the
minimization of the %2 including the error-correlation
matrix, as discussed in Sec. IIIC. Table VI is divided into
three blocks—first, the large-Q2 cutoff is varied, next the
small-Q2 cutoff is varied, and finally the fit-interval window
is moved along the available data set. Note that when one
leaves out the small Q2 values, the data point Fv

1 ð0Þ is no
longer included in the fit interval and A0 can vary more.
The overall conclusion is that A0 is always compatible

with one within error bars and all results for Md are
consistent over the entire table. The former is an important
internal consistency check, and the latter allows us to
conclude that the dipole function is indeed an excellent
description of the Fv

1 ðQ2Þ form factor over the entire range
of available Q2 values.
After performing similar fits at all available pion masses,

we obtained the numbers compiled in Table VII. We have
taken all availableQ2 values for each fit at fixed pion mass.
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and corresponding radii 
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detail in Sec. IVB; here we only wish to exhibit the finite-
size effects. The upper cutoff in Q2 for the dipole fit has
been varied and the results for different cutoffs have been
drawn with a slight displacement for clarity. At the pion
mass ofm! ¼ 356 MeV, there is a discrepancy outside the
error bars between the two volumes. However, when re-
ducing the data set to Q2 values below 0:4 GeV2, we find
that the two Dirac radii are actually compatible. The
discrepancy becomes apparent only at data points beyond
Q2 > 0:4 GeV2.
When studying the isovector form factor Fv

2 ðQ2Þ, we
obtain the Pauli radii, hr22i, and the anomalous magnetic
moments, "v, shown in Fig. 7. Also these observables will
be discussed in detail in Sec. IVB; here we again wish to
exhibit only the finite-size effects. As in the previous plot,
we have applied dipole fits with varying upper cutoff inQ2.
Again, we find that there is a notable discrepancy for hr22i
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that fix gA. The variation in the fits given the range of gA is
seen in Figs. 9 and 10.

Within the same chiral perturbation formalism, the ex-
pressions for the radii r2p!n

1 and r2p!n
2 are given by [33]

r21 ¼ ! 1

ð4!f!Þ2
!
1þ 7g2A þ ð10g2A þ 2Þ log

"
m!

"

#$

! 12B10

ð4!f!Þ2
þ c2A

54!2f2!

!
26þ 30 log

"
m!

"

#

þ 30
!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2 !m2

!

p logRðm!Þ
$

(28)

r22 ¼
1

#vðm!Þ

&
g2AmN

8f2!!m!
þ c2AmN

9f2!!
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2 !m2

!

p logRðm!Þ

þ 24mNBc2

'
: (29)

The Dirac radius r2p!n
1 has only one fit parameter, whereas

the combination r2p!n
2 #p!n at leading one-loop order has

no adjustable parameters since the term proportional to Bc2

is absent. However, one can allow for such a term, which
parametrizes the short-distance contributions to the Pauli
radius and which can be regarded analogously to B10ð"Þ in
the Dirac radius [33]. We therefore include the so-called
core-term proportional to Bc2.
The fit parameters determined from F1 and F2 allows us

to obtain the mass dependence of the isovector magnetic
moment and r2p!n

1 . For r2p!n
2 #p!n we need, in addition,

the value of Bc2 which is obtained by fitting r2p!n
2 #p!n.

The resulting fits are shown in Fig. 10. Two sets of fits are
shown, one using the physical value of the nucleon axial
charge in the fits for the form factors and one using the
value determined at the chiral limit using lattice data on gA.
As can be seen, lattice data are better described when we
use the value of gA determined at the chiral limit from our
lattice data [24]. Once again the qualitative behavior is to
improve agreement with experiment, which again indicates
that the chiral extrapolation of the form factors has the
correct trend.
An alternative approach is to fit separately #p!n using

three parameters, namely #vð0Þ, cV and E1ð" ¼ 0:6 GeVÞ
and fix cA ¼ 1:125. Such a fit yields $2=d:o:f ¼ 0:5 and
provides a nice fit to the results on #p!n. We perform a fit
to r2p!n

1 with fit parameter B10 and to r2p!n
2 #p!n with fit

parameter Bc2 using the expressions of Eq. (29), obtaining
$2=d:o:f ¼ 10 and 11,, respectively, which indicate that
the radii are not well described by these Ansätze. The
resulting values of the parameters from fitting #p!n,
r2p!n
1 and r2p!n

2 #p!n independently are given in
Table III. If one treats cA as a fit parameter and performs
a combined fit with six parameters to #p!n, r2p!n

1 and

r2p!n
2 #p!n one obtains an improved fit with $2=d:o:f ¼
1:6. The resulting fit for #p!n is the same as that obtained
by fitting separately the data on #p!n. Taking g0A ¼ 1:08
instead of the physical value does not improve these fits.

IV. RESULTS IN THE CONTINUUM LIMIT

In order to study the dependence on the lattice spacing
quantitatively we use the simulations at three lattice spac-
ings at the smallest and largest pion mass used in this work.
We take as the reference pion mass the one computed on
the finest lattice and interpolate results at the other two
%-values to these two reference masses. In Fig. 11 we show
the value of the Dirac and Pauli F1 and F2 at these
reference pion masses computed in units of r0. We note
that we first interpolate these form factors to the same value
of Q2. In the figure we show the form factors at Q2 ¼
0:357 GeV. We perform a fit to these data using a linear
form F1ða2Þ ¼ F1ð0Þ þ cða=r0Þ2. The resulting fit is
shown in Fig. 11. Setting c ¼ 0 we obtain the constant
line also shown in the figure. As can be seen, for both large
and small pion masses the slope is consistent with zero
yielding a value in the continuum limit in agreement with

FIG. 10 (color online). Chiral fits to the TMF data using the
parameters determined from fitting F1 and F2. The higher error
band corresponds to the fit taking the physical value of gA and
the lower to taking the value at the chiral limit after extrapolating
using HB$PT our lattice data.
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that fix gA. The variation in the fits given the range of gA is
seen in Figs. 9 and 10.
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1 has only one fit parameter, whereas

the combination r2p!n
2 #p!n at leading one-loop order has

no adjustable parameters since the term proportional to Bc2

is absent. However, one can allow for such a term, which
parametrizes the short-distance contributions to the Pauli
radius and which can be regarded analogously to B10ð"Þ in
the Dirac radius [33]. We therefore include the so-called
core-term proportional to Bc2.
The fit parameters determined from F1 and F2 allows us

to obtain the mass dependence of the isovector magnetic
moment and r2p!n
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2 #p!n we need, in addition,

the value of Bc2 which is obtained by fitting r2p!n
2 #p!n.

The resulting fits are shown in Fig. 10. Two sets of fits are
shown, one using the physical value of the nucleon axial
charge in the fits for the form factors and one using the
value determined at the chiral limit using lattice data on gA.
As can be seen, lattice data are better described when we
use the value of gA determined at the chiral limit from our
lattice data [24]. Once again the qualitative behavior is to
improve agreement with experiment, which again indicates
that the chiral extrapolation of the form factors has the
correct trend.
An alternative approach is to fit separately #p!n using

three parameters, namely #vð0Þ, cV and E1ð" ¼ 0:6 GeVÞ
and fix cA ¼ 1:125. Such a fit yields $2=d:o:f ¼ 0:5 and
provides a nice fit to the results on #p!n. We perform a fit
to r2p!n

1 with fit parameter B10 and to r2p!n
2 #p!n with fit

parameter Bc2 using the expressions of Eq. (29), obtaining
$2=d:o:f ¼ 10 and 11,, respectively, which indicate that
the radii are not well described by these Ansätze. The
resulting values of the parameters from fitting #p!n,
r2p!n
1 and r2p!n

2 #p!n independently are given in
Table III. If one treats cA as a fit parameter and performs
a combined fit with six parameters to #p!n, r2p!n

1 and
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2 #p!n one obtains an improved fit with $2=d:o:f ¼
1:6. The resulting fit for #p!n is the same as that obtained
by fitting separately the data on #p!n. Taking g0A ¼ 1:08
instead of the physical value does not improve these fits.

IV. RESULTS IN THE CONTINUUM LIMIT

In order to study the dependence on the lattice spacing
quantitatively we use the simulations at three lattice spac-
ings at the smallest and largest pion mass used in this work.
We take as the reference pion mass the one computed on
the finest lattice and interpolate results at the other two
%-values to these two reference masses. In Fig. 11 we show
the value of the Dirac and Pauli F1 and F2 at these
reference pion masses computed in units of r0. We note
that we first interpolate these form factors to the same value
of Q2. In the figure we show the form factors at Q2 ¼
0:357 GeV. We perform a fit to these data using a linear
form F1ða2Þ ¼ F1ð0Þ þ cða=r0Þ2. The resulting fit is
shown in Fig. 11. Setting c ¼ 0 we obtain the constant
line also shown in the figure. As can be seen, for both large
and small pion masses the slope is consistent with zero
yielding a value in the continuum limit in agreement with
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that fix gA. The variation in the fits given the range of gA is
seen in Figs. 9 and 10.

Within the same chiral perturbation formalism, the ex-
pressions for the radii r2p!n

1 and r2p!n
2 are given by [33]
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The Dirac radius r2p!n
1 has only one fit parameter, whereas

the combination r2p!n
2 #p!n at leading one-loop order has

no adjustable parameters since the term proportional to Bc2

is absent. However, one can allow for such a term, which
parametrizes the short-distance contributions to the Pauli
radius and which can be regarded analogously to B10ð"Þ in
the Dirac radius [33]. We therefore include the so-called
core-term proportional to Bc2.
The fit parameters determined from F1 and F2 allows us

to obtain the mass dependence of the isovector magnetic
moment and r2p!n

1 . For r2p!n
2 #p!n we need, in addition,

the value of Bc2 which is obtained by fitting r2p!n
2 #p!n.

The resulting fits are shown in Fig. 10. Two sets of fits are
shown, one using the physical value of the nucleon axial
charge in the fits for the form factors and one using the
value determined at the chiral limit using lattice data on gA.
As can be seen, lattice data are better described when we
use the value of gA determined at the chiral limit from our
lattice data [24]. Once again the qualitative behavior is to
improve agreement with experiment, which again indicates
that the chiral extrapolation of the form factors has the
correct trend.
An alternative approach is to fit separately #p!n using

three parameters, namely #vð0Þ, cV and E1ð" ¼ 0:6 GeVÞ
and fix cA ¼ 1:125. Such a fit yields $2=d:o:f ¼ 0:5 and
provides a nice fit to the results on #p!n. We perform a fit
to r2p!n

1 with fit parameter B10 and to r2p!n
2 #p!n with fit

parameter Bc2 using the expressions of Eq. (29), obtaining
$2=d:o:f ¼ 10 and 11,, respectively, which indicate that
the radii are not well described by these Ansätze. The
resulting values of the parameters from fitting #p!n,
r2p!n
1 and r2p!n

2 #p!n independently are given in
Table III. If one treats cA as a fit parameter and performs
a combined fit with six parameters to #p!n, r2p!n

1 and

r2p!n
2 #p!n one obtains an improved fit with $2=d:o:f ¼
1:6. The resulting fit for #p!n is the same as that obtained
by fitting separately the data on #p!n. Taking g0A ¼ 1:08
instead of the physical value does not improve these fits.

IV. RESULTS IN THE CONTINUUM LIMIT

In order to study the dependence on the lattice spacing
quantitatively we use the simulations at three lattice spac-
ings at the smallest and largest pion mass used in this work.
We take as the reference pion mass the one computed on
the finest lattice and interpolate results at the other two
%-values to these two reference masses. In Fig. 11 we show
the value of the Dirac and Pauli F1 and F2 at these
reference pion masses computed in units of r0. We note
that we first interpolate these form factors to the same value
of Q2. In the figure we show the form factors at Q2 ¼
0:357 GeV. We perform a fit to these data using a linear
form F1ða2Þ ¼ F1ð0Þ þ cða=r0Þ2. The resulting fit is
shown in Fig. 11. Setting c ¼ 0 we obtain the constant
line also shown in the figure. As can be seen, for both large
and small pion masses the slope is consistent with zero
yielding a value in the continuum limit in agreement with

FIG. 10 (color online). Chiral fits to the TMF data using the
parameters determined from fitting F1 and F2. The higher error
band corresponds to the fit taking the physical value of gA and
the lower to taking the value at the chiral limit after extrapolating
using HB$PT our lattice data.
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Maybe everybody is wrong… (one can suspect a strong L-dependence at the physical point) 
 
Maybe something is missing  … 

D. Renner, Lattice 09 (PoS 2009) 

 « World-wide » evaluation  
 





RESULTS QCDSF-UKQCD 



A 180 MeV pion does not solve the problem… but mπL=2.8  

Results QCDSF-UKQCD 



More difficult to compute, less well known experimentally 
…but the results presented above were illustrative of the general situation 
 
Everythig is “almost fine” … but something is missing 

  

Momentum fraction from ETMC

< x >= A2(0)

ETMC also computed a bulk of more elaborate observables (GFF: pdf, GPD) 

Fnðx;!; q2Þ ¼
1

2
!uNðp0Þ

!
nHðx;!; q2Þ

þ i
n"q#$

"#

2mN
Eðx;!; q2Þ

"
uNðpÞ; (2)

Fn%5
ðx;!; q2Þ ¼ 1

2
!uNðp0Þ

!
n%5

~Hðx;!; q2Þ

þ n % q%5

2mN

~Eðx;!; q2Þ
"
uNðpÞ; (3)

where uN is a nucleon spinor and H, E, ~H, and ~E are the
twist-two chirality-even GPDs. In the forward limit, for
which ! ¼ 0 and q2 ¼ 0, they reduce to the ordinary
parton distributions; namely, the longitudinal momentum
qðxÞ and the helicity "qðxÞ distributions are given by

qðxÞ ¼ Hðx; 0; 0Þ and "qðxÞ ¼ ~Hðx; 0; 0Þ: (4)

The first few Mellin moments of these parton distributions
are of particular interest:

hxn&1iq ¼
Z 1

&1
xn&1qðxÞdx; (5)

hxn&1i"q ¼
Z 1

&1
xn&1"qðxÞdx: (6)

Since, as already mentioned, matrix elements of the light-
cone operator, as defined in Eq. (1), cannot be extracted
from correlators in Euclidean lattice QCD, the usual
method is to proceed with an operator product expansion
of this operator that leads to a tower of local operators
given by

O "1..."n
V ¼ !c%f"1 iD

,"2

. . . iD
,"ng

c ; (7)

O "1..."n
A ¼ !c%f"1 iD

,"2

. . . iD
,"ng

%5c : (8)

The curly brackets represent a symmetrization over indices
and the subtraction of traces. The computation of the
matrix elements of these operators on the Euclidean lattice
can be done with standard techniques. The case n ¼ 1
amounts to calculating the elastic form factors of the vector
and axial-vector currents, and the results are reported in
Refs. [4,17]. In this work, we concentrate on the n ¼ 2
moments, i.e., the matrix elements of operators with a
single derivative. The matrix elements of these operators
are parametrized in terms of the generalized form factors
(GFFs) A20ðq2Þ, B20ðq2Þ, C20ðq2Þ and ~A20ðq2Þ, ~B20ðq2Þ,
according to

hNðp0; s0ÞjO"#
n jNðp; sÞi ¼ !uNðp0; s0Þ

!
A20ðq2Þ%f"P#g

þ B20ðq2Þ
i$f"&q&P

#g

2m

þ C20ðq2Þ
1

m
qf"q#g

"
uNðp; sÞ;

hNðp0; s0ÞjO"#
n%5

jNðp; sÞi ¼ !uNðp0; s0Þ
!
~A20ðq2Þ%f"P#g%5

þ ~B20ðq2Þ
qf"P#g

2m
%5

"
uNðp; sÞ:

(9)

Note that the GFFs depend only on the squared momen-
tum transfer q2 ¼ ðp0 & pÞ2, which implies that the mo-
ments of the GPDs are polynomial in !. In the forward
limit, we have A20ð0Þ ¼ hxiq and ~A20ð0Þ ¼ hxi"q, which
are, respectively, the first moments of the unpolarized
and polarized quark distributions. Knowing the GFFs,
one can evaluate the quark contribution to the nucleon
spin using Ji’s sum rule: Jq ¼ 1

2 ½A
q
20ð0Þ þ Bq

20ð0Þ(.
Moreover, using the measured or calculated value of
the quark helicity "#q ¼ gqA, the decomposition Jq ¼
1
2"#

q þ Lq allows to study the role of the quark orbital
angular momentum Lq.

II. LATTICE EVALUATION

Twisted mass fermions [18] provide an attractive for-
mulation of lattice QCD that allows for automatic OðaÞ
improvement, infrared regularization of small eigenvalues,
and fast dynamical simulations [19]. For the calculation of
the moments of GPDs, which is the main focus of this
work, the automatic OðaÞ improvement is particularly
relevant, since it is achieved by tuning only one parameter
in the action, requiring no further improvements on the
operator level.
The action for two degenerate flavors of quarks in

twisted mass QCD is given by

S ¼ Sg þ
X

x

!'ðxÞ½DW þmcrit þ i%5(
3"('ðxÞ; (10)

where DW is the Wilson Dirac operator, and we use the
tree-level Symanzik improved gauge action Sg [20]. The
quark fields ' are in the so-called ‘‘twisted basis’’ obtained
from the ‘‘physical basis’’ at maximal twist by a simple
transformation:

c ¼ 1ffiffiffi
2

p ½1þ i(3%5(' and !c ¼ !'
1ffiffiffi
2

p ½1þ i(3%5(:

(11)

We note that, in the continuum, this action is equivalent to
the standard QCD action. As we pointed out, a crucial
advantage is the fact that, by tuning a single parameter,
namely, the bare untwisted quark mass to its critical value
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where uN is a nucleon spinor and H, E, ~H, and ~E are the
twist-two chirality-even GPDs. In the forward limit, for
which ! ¼ 0 and q2 ¼ 0, they reduce to the ordinary
parton distributions; namely, the longitudinal momentum
qðxÞ and the helicity "qðxÞ distributions are given by

qðxÞ ¼ Hðx; 0; 0Þ and "qðxÞ ¼ ~Hðx; 0; 0Þ: (4)

The first few Mellin moments of these parton distributions
are of particular interest:
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cone operator, as defined in Eq. (1), cannot be extracted
from correlators in Euclidean lattice QCD, the usual
method is to proceed with an operator product expansion
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given by
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The curly brackets represent a symmetrization over indices
and the subtraction of traces. The computation of the
matrix elements of these operators on the Euclidean lattice
can be done with standard techniques. The case n ¼ 1
amounts to calculating the elastic form factors of the vector
and axial-vector currents, and the results are reported in
Refs. [4,17]. In this work, we concentrate on the n ¼ 2
moments, i.e., the matrix elements of operators with a
single derivative. The matrix elements of these operators
are parametrized in terms of the generalized form factors
(GFFs) A20ðq2Þ, B20ðq2Þ, C20ðq2Þ and ~A20ðq2Þ, ~B20ðq2Þ,
according to
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Note that the GFFs depend only on the squared momen-
tum transfer q2 ¼ ðp0 & pÞ2, which implies that the mo-
ments of the GPDs are polynomial in !. In the forward
limit, we have A20ð0Þ ¼ hxiq and ~A20ð0Þ ¼ hxi"q, which
are, respectively, the first moments of the unpolarized
and polarized quark distributions. Knowing the GFFs,
one can evaluate the quark contribution to the nucleon
spin using Ji’s sum rule: Jq ¼ 1

2 ½A
q
20ð0Þ þ Bq

20ð0Þ(.
Moreover, using the measured or calculated value of
the quark helicity "#q ¼ gqA, the decomposition Jq ¼
1
2"#

q þ Lq allows to study the role of the quark orbital
angular momentum Lq.

II. LATTICE EVALUATION

Twisted mass fermions [18] provide an attractive for-
mulation of lattice QCD that allows for automatic OðaÞ
improvement, infrared regularization of small eigenvalues,
and fast dynamical simulations [19]. For the calculation of
the moments of GPDs, which is the main focus of this
work, the automatic OðaÞ improvement is particularly
relevant, since it is achieved by tuning only one parameter
in the action, requiring no further improvements on the
operator level.
The action for two degenerate flavors of quarks in

twisted mass QCD is given by

S ¼ Sg þ
X

x

!'ðxÞ½DW þmcrit þ i%5(
3"('ðxÞ; (10)

where DW is the Wilson Dirac operator, and we use the
tree-level Symanzik improved gauge action Sg [20]. The
quark fields ' are in the so-called ‘‘twisted basis’’ obtained
from the ‘‘physical basis’’ at maximal twist by a simple
transformation:

c ¼ 1ffiffiffi
2

p ½1þ i(3%5(' and !c ¼ !'
1ffiffiffi
2

p ½1þ i(3%5(:

(11)

We note that, in the continuum, this action is equivalent to
the standard QCD action. As we pointed out, a crucial
advantage is the fact that, by tuning a single parameter,
namely, the bare untwisted quark mass to its critical value
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Nucleon generalized form factors using TMF M. Constantinou

Figure 3: Our lattice data on 〈x〉u−d (A20) and 〈x〉Δu−Δd (Ã20) as a function of the pion mass squared. Results
using other lattice actions are also plotted. The physical point is shown by the asterisk.

3. Nucleon moments

In Fig. 3 we show our results on the spin-independent and helicity moments, and results using
other lattice actions [8, 12, 13]. Although to compare lattice data using different discretization
schemes one would have to first extrapolate to the continuum limit, we find a good agreement
among lattice results, due to small cut-off effects for lattice spacings of about 0.1 fm. Lattice
values for 〈x〉u−d = A20(Q2 = 0) although compatible, are higher from the phenomenological value
〈xu−d〉 ∼ 0.16. A similar conclusion holds for the helicity moment.
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Momentum fraction from QCDSF

< x >= A2(0) smallest pion mass : 170MeV !



A recent work at the pion mass (MIT + BMW) 

J. Green et al PoS LATTICE2012 (2012) 170 

When r2 is improved gA ….goes down !!! 
 
Uncontrolled erros  
 





 Lattice Non-QCD (it exists!!! ) 
There are (at least) three ways of doing Nuclear Physics on the Lattice 
 
1. “Ab initio” from LQCD, in the sense presented above (NN, 2H,3He,4He..) 

2. Using lattice techniques to solve the many-nucleon problem 
    “Nuclear Lattice Simulations” group: Bochum, Bonn, Juelich, North-Caroline SU   
    It is a non relativistic QF approach, strictly equivalent (by construction) to  
    Fadeev-Yakubovsky equations. 
    It has been very successful and is able to go well beyond 
           
3. Putting the conventional NN interaction lagrangians on the lattice  
    … and see how much the full QFT contents differ from the underlying V  

I’ll talk about 3 with the simplest meson-fermion coupling: Yukawa model 



The Yukawa model in QFT 
Understand the full QFT content of the simplest  fermion-fermion interaction model  

 
 
 
…. 70 years after his formulation by Yukawa (1935) ! 
 
 
How far is V from L ? 
 
- Compute the low energy observables (B,a,..) 
- Compare them to the potential results, in different dynamical equations 

F. De Soto et al, Eur. Phys. J. A47 (2011) 57; arXiv 1104.1907 

We worked in the “quenched approximation“  
i.e. neglect NN pairs in meson propagator 

This consists in neglecting the NN loops  
Because of the Nucleon heaviness, this approximation seems physically justified 
In Nuclear Physics, nobody believe that nucleon-antinucleon pairs could  play any role 

F. de Soto et al.: The nuclear Yukawa model on a lattice Page 3 of 10

!

"

!

Fig. 1. The quenched approximation neglects the possibility
for a meson Φ to create a virtual fermion-antifermion pair ΨΨ̄ .

and the fermionic part is written in terms of the interact-
ing Dirac operator

D = DW + gLφ. (13)

Notice that the model is now made dimensionless.
When needed, the physical quantities —masses, energies,
etc.— will be given in terms of the lattice spacing.

One of the most demanding issues when computing the
vacuum expectation values (5) comes from the Grassman-
nian character of fermion fields, that have to be integrated
out by algebraic methods. For example the fermion prop-
agator, corresponding to O(ψ̄,ψ,φ) = ψxψy,

S(x, y) =
〈
ψxψy

〉
=

1

Z

∫
[dφ]D−1

xy det[D(φ)] e−SM (φ) ,

(14)
implies the evaluation of a determinant and inverse of an
operator that, even for moderate lattices, V ∼ 244, has a
dimension of ∼ 106. Moreover, if a Monte Carlo simulation
is to be done using eq. (14), the probability distribution
for meson configurations is given by e−SM (φ)−log(det(D)),
which means evaluating a large determinant in every
Monte Carlo step. This can be avoided by the use of hybrid
Monte Carlo techniques that nevertheless are the main
source of time spent in the simulation. This task is consid-
erably simplified in the “quenched” approximation that,
from the computational point of view, consists in setting
det(D) independent of the meson field in the fermionic
integral.

From a physical point of view, the quenched approxi-
mation avoids the possibility for a meson to create a vir-
tual nucleon-antinucleon pair φ → ψ̄ψ (see fig. 1). Due to
the heaviness of the nucleon with respect to the exchanged
meson this approximation is fully justified in low-energy
nuclear physics and implicitly assumed in all the potential
models.

We have furthermore chosen, in our simulation, to
neglect the meson self-interaction term setting λ0 = 0
in (12). This choice is consistent only in the quenched ap-
proximation. In a full QFT treatment of this model, the
fermions loops will generate meson self-interactions, that
require a λ0φ4 counterterm for renormalizability.

The model depends on three dimensionless parame-
ters g0, aµ0, and am0 usually set via the hopping param-
eter (8). These parameters appearing in the Lagrangian
are not physical: they are modified by the interaction so
that they have to be renormalized. Our first task to map

the bare quantities into the renormalized parameter space

(aµ0, g0, am0) ⇒ (aµR, gR, amR).

In the quenched approximation and for λ0 = 0, mesons
do not interact with each other and therefore its mass
renormalize trivially aµR = aµ0. In the following we will
omit subscripts and denote the dimensionless meson mass
by aµ. The lattice spacing a does never appear explic-
itly and it has to be fixed by setting a physical dimen-
sional quantity. We do that by identifying the unchanged
meson mass µ to a physical meson of µ = 0.65 GeV, a
typical value used in the NN models. If we are using in
our simulations aµ = 0.1, the lattice spacing is given by
a = aµ

µ = 0.1
0.65 GeV ≈ 0.15GeV−1 ≈ 0.03 fm.

Coupling constant renormalization is a more involved
issue. Renormalized coupling constants were computed in
a previous work [19]. For the scalar coupling no sizable
effect of renomalization was found, i.e. gR ≈ g0 in a wide
range of momenta. From now on, we will denote by g this
unique coupling constant.

The remaining task for finding the adequate parameter
space is thus to compute the renormalized fermion mass as
a function of the bare parameters. This will be described
in the next section.

3 Monte Carlo simulation

3.1 Generating field configuration

In the above-defined conditions, the generation of meson-
field configurations is straightforward. This can be seen
by writing the Klein-Gordon action (9) in Fourier space

SKG =
∑

k

|φ̃k|2

2σ2
k

, (15)

where φ̃k denotes the Fourier transform of the meson field
φx

φ̃k =
1√
V

∑

x

φxe−ik·x ,

and we have introduced the quantity

σ2
k =

1

k̂2 + a2µ2
,

which depends on the lattice discretized momenta

k̂µ = 2 sin
kµ

2
, kµ =

2π

Lµ
nµ.

One can see from eq. (15) that the different Fourier modes
φ̃k of the meson field appearing in the action are decoupled
and can be generated independently.

The Monte Carlo algorithm becomes then trivial as it
is enough to produce at each lattice point k, independent

Untill now, we have always worked in the “quenched” approximation: i.e. set  det (D)=1 

The “quenched” approximation  

In this case, scalar field are gaussian in momentum space 
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complex scalar fields with a probability density given by

P (φ̃k) ∼ exp

[

−
1

2

|φ̃k|2

σ2
k

]

=

exp

[

−
1

2

Re[φ̃2
k]

σ2
k

]

exp

[

−
1

2

Im[φ̃2
k]

σ2
k

]

, (16)

i.e. centered Gaussian distributions, both for their real
and imaginary parts, with a variance σk depending on
k and the constraint imposed by the reality of φx. This
method generates configurations that are statistically in-
dependent, thus saving a large amount of computing time
with respect to the Metropolis algorithm.

The scalar fields in configuration space φx are finally
obtained by performing an inverse Fourier transform on
φ̃k. It follows from the particular form (16) that φx are
also centered Gaussian with a width σ, independent of x,
given by

σ2(L, aµ) =
1

V

∑

k

1

k̂2 + a2µ2
. (17)

Note, however, that the φx are now correlated. The cor-
relation function is given by

∆(x − y) = 〈φxφy〉 =
∑

k

1

k̂2 + a2µ2
eik(x−y), (18)

which is the scalar propagator in configuration space. It
is interesting to note that the parameter σ in eq. (17) is
related to the lattice regularization of the potential at the
origin,

V (0) = −g2∆(0) = −g2V σ2. (19)

The aµ-dependence of σ is displayed in fig. 2 for dif-
ferent values of the lattice size, L. It behaves like 1/aµ in
the two trivial limits aµ → 0 and aµ & 1 with a plateau
in between, which is the region we are interested in. The
parameter σ allows a discussion of the discretization and
finite-volume errors in terms of physically well-defined lim-
iting cases:
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Fig. 3. Discrete Yukawa potential (VLattice) for L = 48 and
aµ = 0.1 (black dots) compared to the continuum one (solid
line).

– For large values of aµ, the k̂2 term in (17) becomes
negligible and σ = 1

aµ for any value of L. This corre-

sponds to a contact interaction between fermions.
– In the limit aµ → 0 the sum (17) is dominated by the

mode φ̃k=0 which generates a behavior

σ2 =
1

V

1

a2µ2
+ . . .

This limit corresponds to the mean-field approach of
the problem.

The non-relativistic Yukawa potential can be com-
puted for the discrete lattice using eq. (18) but sum-
ming only over spatial directions. The resulting potential
(VLattice) for aµ = 0.1 and L = 48 is represented in fig. 3
(black dots) and compared to the continuum result (solid
line). The main effect of discretization is the regulariza-
tion at the origin and is seen to be negligible beyond the
very first points. This potential will be used in sect. 4 to
compare continuum and lattice results.

The appearance of volume effects depends crucially on
the aµ-value: they are very small for large values of aµ but
important when aµ → 0. As a matter of fact for a given
value of aµ, there is a minimal lattice size L below which
the lattice artifacts are dominant. We took this constraint
into account in the present work.

3.2 Zero modes of Wilson-Dirac operator

When computing physical observables, the integration
over the fermionic fields is performed analytically and the
result is expressed in terms of the inverse Dirac opera-
tor (13). This has been explicitly done in eq. (14) for the
fermion propagator which constitutes the building block
of the lattice simulations. When working in the quenched
approximation, one can set det(D) = 1 and the relevant
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– For large values of aµ, the k̂2 term in (17) becomes
negligible and σ = 1
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sponds to a contact interaction between fermions.
– In the limit aµ → 0 the sum (17) is dominated by the

mode φ̃k=0 which generates a behavior
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This limit corresponds to the mean-field approach of
the problem.

The non-relativistic Yukawa potential can be com-
puted for the discrete lattice using eq. (18) but sum-
ming only over spatial directions. The resulting potential
(VLattice) for aµ = 0.1 and L = 48 is represented in fig. 3
(black dots) and compared to the continuum result (solid
line). The main effect of discretization is the regulariza-
tion at the origin and is seen to be negligible beyond the
very first points. This potential will be used in sect. 4 to
compare continuum and lattice results.

The appearance of volume effects depends crucially on
the aµ-value: they are very small for large values of aµ but
important when aµ → 0. As a matter of fact for a given
value of aµ, there is a minimal lattice size L below which
the lattice artifacts are dominant. We took this constraint
into account in the present work.

3.2 Zero modes of Wilson-Dirac operator

When computing physical observables, the integration
over the fermionic fields is performed analytically and the
result is expressed in terms of the inverse Dirac opera-
tor (13). This has been explicitly done in eq. (14) for the
fermion propagator which constitutes the building block
of the lattice simulations. When working in the quenched
approximation, one can set det(D) = 1 and the relevant

Generate configurations becomes trivial: gaussian random numbers, both for Re and Im parts 

- A “reasonable” approximation given the N mass and  
in any case implicit in ALL nuclear models  



Motivation: a pionneer result for scalar (φ2χ) theory  

Cross ladder effects are big, very expensive to compute and only the first correction to ladder 
J.C. and V.A. Karmanov, Eur. J. Phys A27 (2006)11 
 
T.Nieuwenhius and J. Tjon sumed all exchange diagrams for scalar φ2χ theory (Feynman-
Schwinger representation) and found spectacular changes PRL77 (1996) 814  
 

However the scalar φ2χ theory is not bounded by below (Baym 60’s).  
We thus looked at the simplest - well defined - theory with ladder counterpart (“potential”)   

 
This is the fermion-fermion Yukawa model  (apart from “triviality”) 



α=g2/4π 

One looses a factor 2 in B, even at small B, idependently of µ 
J.C. and V.A. Karmanov, Eur. J. Phys A27 (2006)11 

J. Carbonell and V.A. Karmanov: Cross-ladder effects in Bethe-Salpeter and light-front equations 15

Fig. 5. Binding energy B vs. coupling constant α for BS and LF equations with the ladder (L) kernels only and with the
ladder+ cross-ladder (L+CL) one for exchange mass µ = 0.15.

Fig. 6. The same as in fig. 5 for exchange mass µ = 0.5 and, in addition, binding energy B for LF equation with the
ladder+ cross-ladder+ stretched-box (L+CL+SB) kernel.

for any kernel, with BS equation being always more at-
tractive. These approaches differ from each other by the
stretched-box diagrams with higher numbers of inter-
mediate mesons. Our results indicate that the higher-
order stretched-box contributions are small. This agrees
with direct calculations in LFD of stretched-box kernel
(fig. 4) with two-meson states [11] and with calculations
of the higher Fock sector contributions [13] in the Wick-

Cutkosky model. The calculation in LFD of the binding
energy with the stretched-box contribution (L+CL+SB)
and its comparison with (L+CL) also shows that the
stretched-box contribution is attractive but small.

The comparison of our results with those obtained
in [5], evaluating the binding energy Ball for the com-
plete set of all irreducible diagrams, shows that the ef-
fect of the considered cross-ladder graphs, though being
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for any kernel, with BS equation being always more at-
tractive. These approaches differ from each other by the
stretched-box diagrams with higher numbers of inter-
mediate mesons. Our results indicate that the higher-
order stretched-box contributions are small. This agrees
with direct calculations in LFD of stretched-box kernel
(fig. 4) with two-meson states [11] and with calculations
of the higher Fock sector contributions [13] in the Wick-

Cutkosky model. The calculation in LFD of the binding
energy with the stretched-box contribution (L+CL+SB)
and its comparison with (L+CL) also shows that the
stretched-box contribution is attractive but small.

The comparison of our results with those obtained
in [5], evaluating the binding energy Ball for the com-
plete set of all irreducible diagrams, shows that the ef-
fect of the considered cross-ladder graphs, though being

µ=0.15 µ=0.50 
 

All these results  motivated us to consider a full QFT solution of the problem…   

Cross ladder effects in φ2χ theory with BS and LFD equation  



Absence of any bound state !!! 
 
Fermion propagator is obtained as solution of a linear system with Dirac operator 
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Fig. 4. Conditioning number as a function of gL for a fixed
value of κ = 0.11 and V = 84 and for 9 different meson-field
configurations.

numerical task is thus reduced to compute D−1
xy [φ] for a

statistical ensemble of meson-field configurations:

S(x, y) =
1

Z

∫
[dφ]D−1

xy (φ) e−SM (φ) ≈
1

N

N∑

i=1

D−1
xy (φi).

(20)
Due to translational invariance one is left in practice

to compute S[φ](x, 0) ≡ D−1
x0 [φ], that is to solve the linear

system:
Dzx(φ)Sx(φ) = δz0. (21)

It is worth noticing that in the full QFT formula-
tion every configuration is weighted by the determinant
of the Dirac operator D and therefore the configurations
yielding an ill-conditioned linear system (21), i.e. with
det(D) ≈ 0, do not contribute to the functional integral.
In the quenched approximation, however, this is no longer
true and “ill-conditioned configurations” can be sampled.

As a practical measure of the “ill-conditioness” of D
we have considered its “condition number” defined as the
ratio between the largest and the lowest eigenvalue mod-
ulus [28]. The larger this number is the more difficult it is
to solve the linear system. Depending on the method used
for that purpose, either the algorithm cannot find the so-
lution, or the round-off errors make the solution wrong. In
exact arithmetic the condition number measures how the
solution changes when the second member of the linear
system slightly changes.

We have found that such “ill-conditioned configura-
tions” appear in the Yukawa model for almost any κ when
gL ! 0.6. In this case, the inversion of the Dirac operator
becomes in practice impossible [29]. For illustrative pur-
poses, we have plotted in fig. 4 the condition number of D
as a function of the lattice coupling constant gL for an en-
semble of L = 8 configurations at fixed value of κ. As one
can see, the condition number of a given configuration di-
verges on a discrete set of gL values for gL ! 0.6 indicating
the practical impossibility to compute the nucleon propa-
gator. The precise gL values where this divergence occurs

depend on the particular configuration, on the values of κ
and aµ and on the lattice size. It turns out, however, that
the situation described in fig. 4 is generic for the quenched
Yukawa model.

The existence of zero modes in the quenched Yukawa
model was already found in [30] but the numerical results
performed with very small lattice let these authors suspect
the existence of a second allowed region at large values of
gL. It can be shown, however, that this result is a volume
artifact as the second region disappears exponentially with
the number of lattice sites in the thermodynamical limit.
This issue as well as some properties of the interacting
Dirac operator (13), in particular the fact that its spec-
tral properties do not depend independently of κ and g
but rather on their ratio, will be treated in detail in a
forthcoming publication [29].

As a conclusion, the numerical simulations in the
quenched Yukawa model are limited to values of the lat-
tice coupling constant gL " 0.6. Using a typical value
of κ = 0.1, this corresponds to g = gL

2κ " 3, that is

α = g2

4π " 0.7 which is of the same order than the αQCD

in the non-perturbative region.

3.3 Renormalized fermion mass

Renormalized particle masses are obtained in lattice QFT
by considering the time evolution of the correlator matrix
defined as

C(%p, t) =
∑

$x

〈
J(x)J†(0)

〉
ei$p·$x, (22)

where J† creates a particle state at the origin and J de-
stroys it at x. The tensorial indexes —depending on the
type of particle— are implicit and the vacuum expecta-
tion value 〈· · · 〉 is obtained through an average over field
configurations. It can be shown that the correlator ma-
trix (22) has contributions from all the particle states n
satisfying 〈0|J |n〉 %= 0, and has the form

TrC(%p, t) =
∑

n

cn cosh En

(
t −

T

2

)
. (23)

For %p = 0, it behaves as a sum of hyperbolic cosine with
the rest mass mi of the particle states:

TrC(t)=c0 cosh am0

(
t−

T

2

)
+ c1 cosh am1

(
t−

T

2

)
+ · · ·

(24)
Using the above equation at two consecutive times one
can extract an effective mass

ameff(t) = F
[

C(t)

C(t + 1)

]
, (25)

which, at large enough Euclidean times, will display a
plateau region that will be identified to the am0 value.
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the situation described in fig. 4 is generic for the quenched
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The existence of zero modes in the quenched Yukawa
model was already found in [30] but the numerical results
performed with very small lattice let these authors suspect
the existence of a second allowed region at large values of
gL. It can be shown, however, that this result is a volume
artifact as the second region disappears exponentially with
the number of lattice sites in the thermodynamical limit.
This issue as well as some properties of the interacting
Dirac operator (13), in particular the fact that its spec-
tral properties do not depend independently of κ and g
but rather on their ratio, will be treated in detail in a
forthcoming publication [29].

As a conclusion, the numerical simulations in the
quenched Yukawa model are limited to values of the lat-
tice coupling constant gL " 0.6. Using a typical value
of κ = 0.1, this corresponds to g = gL

2κ " 3, that is

α = g2

4π " 0.7 which is of the same order than the αQCD

in the non-perturbative region.

3.3 Renormalized fermion mass

Renormalized particle masses are obtained in lattice QFT
by considering the time evolution of the correlator matrix
defined as
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〉
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stroys it at x. The tensorial indexes —depending on the
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tion value 〈· · · 〉 is obtained through an average over field
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[
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which, at large enough Euclidean times, will display a
plateau region that will be identified to the am0 value.

When g increases (g≈0.8), D has an increasing number of very small eigenvalues 
which makes system (1) ill-conditioned       

(1)  

As a QFT,  the Yukawa model “does not exist” without NN loops…  
In “nuclear models” who cares about that ? 

- 

Parameter space of physical interest determined by MR(κ, g, m0) > 0

κ ∈ [0, κc(g, m0)]

Region represented in figure for S and Ps couplings and fixed m0 = 0.25

0 0.5 1
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g
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!
c
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S

Ps

• Dotted lines are perturbative results (g2), symmetric w.r. to kc=1/8

• For S, compact parameter space limited by a critical value gc
s ! 1

Precise determination of gc
s made difficult by appearence of negative

e.v. in Dirac operator: start at g " 0.6 and provoke the failure of
all algorithms used in its inversion

• For Ps, parameter space is in principle infinite

Spectral properties of Dirac-Wilson operator very different

N1. One has g0 > g – related by (8) – specially for S where κ < 0.125

N2. g values are not yet renormalizaed

Results 



Results 
In the “small g” region we computed the scattering length a0 and compare to non relativistic limit And plotted as a function of g to compare with the NR results (the only we know for sure!)  
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Fig. 11. Scattering length extracted from eq. (39) as a function
of the lattice volume Laµ, for gL = 0.3, κ = 0.118 and aµ = 0.1
i.e. G = 0.193, extracted from the data in fig. 10. The solid
line indicates the non-relativistic results and the dashed one
the Born approximation (32).

plotted in fig. 12, for a lattice size of Laµ = 2.4 (L = 24,
aµ = 0.1). One can see that the lattice results notably
departs from the non-relativisitc ones (solid line) and are
above the Born approximation (dashed line). In fig. 12 the
NR scattering length has been computed using the lattice
discretized potential of fig. 3. As one can see, the regular-
ization of the potential at the origin has no effect in the
scattering length (indistinguishable from the continuum
result in the figure). This is due to the fact that the scat-
tering length is a zero energy observable and therefore is
not very sensitive to the details of the interaction. From
the preceding analysis we conclude that the repulsive ef-
fect shown by the lattice data is not related to the lattice
potential discretization at short distances.

The values of the accessible coupling constants extend
beyond the Born regime but are still far from the pole be-
havior corresponding to the appearance of the first bound
state displayed in fig. 8. The difference between the lat-
tice and NR results may indicate strong repulsive correc-
tions. These kinds of corrections are already manifested in
the bound-state problem when solving the same Yukawa
model both in light front [34] and Bethe-Salpeter [35] lad-
der equations.

5 Conclusion

We have considered the quantum-field theory solution of
the simplest nuclear Yukawa model consisting on two iden-
tical nucleons interacting via a scalar meson exchange.
The choice of the scalar coupling with respect to pseudo-
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Fig. 12. Scattering length vs. G for a lattice volume Laµ = 2.4,
2000 samples for each point up to G = 0.3 and 5000 thereafter.
The solid line indicates the continuum non-relativistic result
and the dashed one the Born approximation (32). Blue (on-
line) circles represent the NR result obtained using the lattice
potential in fig. 3.

scalar one was taken in order to optimize the appearance
of the two-body bound states we were interested in.

The problem has been solved using the standard lattice
techniques, based on the path integral formulation of the
theory on a discretized space-time. The meson field has
been described by a discretized Klein-Gordon Lagrangian
without self-interacting λφ4 term and the Dirac-Wilson
discretization was chosen for the fermion.

The resulting model is fully relativistic and was solved
by neglecting only the NN̄ loops generated from the me-
son field in the so-called quenched approximation. This
simplification is physically justified by the heaviness of
the nucleon and is anyway implicit in all nuclear models.

The numerical simulations were performed along the
physical line µ/m ≈ 0.6 where µ and m denote, respec-
tively, the meson and nucleon renormalized masses. The
solutions were found only for coupling constants below
some critical value g ! 3. Above this value the ubiquitous
presence of fermion zero modes made the problem numeri-
cally unsolvable. The addition of a pseudo-scalar coupling
term does not make the problem simpler. The present sit-
uation does not allow to judge whether this problem is
related to the particular fermion discretization used. How-
ever, the same problem was described in the past to affect
naive fermions [23–25]. This seems to indicate that the use
of Wilson fermions is not responsible for the problem.

The range of the accessible coupling constants is be-
low the threshold value for producing two-body bound
states, which in the non-relativistic potential approxima-
tion turns to be g ≈ 3.7 and in the Bethe-Salpeter one

Results were also surprising (we expected additional attraction…)  
But in agreement with relativistic equations 
 



Although the NN potentials are « inspired » by QFT, the link is far from obvious  
 
For strong interactions (large g2), using  « potentials » is like using a Taylor expansion in 
trigonometric  functions 
 

Results 

 
With 1st and 2ond order perturbation on can go everywhere… except to the right place ! 
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The Nuclear Yukawa model - in its full glory - remains to be solved !  





Conclusion 

After going “through impossible walls”, and faced to “irreducible difficulties”, LQCD started a "Rennaissance"  
- Inclusion of quarks (u,d,c,s) dynamically Nf=2, Nf=2+1, Nf=2+1+1  
- Physical masse mπ≈140 MeV reached par 3 collaborations (BMW,QCDSF) 
- God control of discretisation (a≈0.05 fm) and finite volume effects (???) 
Several collaborations (discretisations!) produce interesting results:  
 
Spectroscopy  
GS are 1-3% and entering a precision era 
    Significant differences remain in the “N sigma terms”  σπN and yN   
Excited (resonant) states display sizeable and systematic disagreements, maybe due to thresholds effects 
The way to take them into account is clear and in progress 
First unquenched glueball spectrum appeared: the lowest 0++ mass  OK, the other ones much less ! 
Multibaryon systems (H) : no clear conclusion but seems unbound…in the real world ! 
First bound nuclei from a 2 parameter QCD !!!  
Scattering 
Used to obtain NN potential but remains qualitatively 
YN and YY phasehifts would be reliable and welcome !  
N structure  
Everything is “almost correct”…but “the devil is hidden in the small details”  
The simplest “hot points” (gA,, r2

p, GE/GM) are no yet in agreement with data   
Only simulations at the physical point can point out an eventual disagreement 


