- Particle Detectors & How They Work
 - physics goals & experiment types
 - specialized detectors
 - basic particle-matter interactions
 - tracking, velocity, energy, time
- Designing & Optimizing Detectors
 - how to do mini-studies
 - optimizing performance
 - trade-offs you may have to make
 - mistakes you can avoid!

Importance of Detectors

- Technological advances in particle detection instrumentation is one of two factors underlying the considerable progress in nuclear and hadronic physics of the last 50 years; the other being the development and extension of theoretical techniques.
- Fifty years ago, particles were detected in small table-top size devices at rates of a few per second.
- Today, detectors the size of auditoriums are filled with instruments comprising hundreds of thousands of signal channels with overall event rates in the tens of thousands per second.

Seeing Tracks using Ionization

Bubble Chamber Photo

'super-critical' liquid near boiling boiling begins along ion trail time-consuming to analyze low data rate excellent imaging quality

Don Glaser: -inventor of the bubble chamber 1960 Nobel Prize

The predecessors of the bubble chamber

• Charles Thomson Rees Wilson in 1927 "for his method of making the paths of electrically charged particles visible by condensation of vapour".

The Nobel Prize in Physics **1948** was awarded to **Patrick M.S. Blackett** "for his development of the
Wilson cloud chamber
method, and his discoveries
therewith in the fields of
nuclear physics and cosmic radiation".

Bubble Chamber Photograph:

- Measure trajectory (in B-field)
- correlate tracks with vertices (particle decay)
- ionization density & curvature: measure P, b
- 'vee's **à** see neutrals
- constrained fitting
- Modern detector:
- specialized detectors

Particle Experiments: Physics Goals

Туре	Beam/ Target	Physics Goal	Comments	
Colliding beams	e+ e-	study quarkonia, hadronization, search	good for specific searches, spectroscopy (when masses are ~known)	
	<i>e</i> + <i>e</i> - (asymm.)	weak decays	asymm. Lorentz boost à asymm. detector	
	$pp, p\overline{p}$	hadronization, search	good for general search (e.g. Higgs)	
	AA	QGP, hadronization	very high particle multiplicity	
Fixed Target September 30, 20	ер	GPD's, SIDIS, exclusive	polarized beam, target possible; very high	
	₎₁₃ gp	glueballs, hybrid states, spec trascopy ecto	luminosity, good for production experiments	

Experiment Set-ups

Туре	Projectiles	Detector Type
Colliding beams	e+e-, e+e- (asymm.) PP, PP, AA	Solenoid; perhaps with asymmetric end-caps
Fived Target	oD oD oD DD	small-aperture, focussing spectrometer
Fixed Target	er, yr, pr, rr	large-acceptance magnetic spectrometer

Typical Solenoid Detector - Central Part -

"End-cap" forward-going charged and neutral particles

... muon counters on outside

September 30, 2013

 \bigcirc

Atlas detector at the LHC

 \bigcirc

Realities of an Experimentalist's Life

September 30, 2013

a detector for weak decays

 \bigcirc

Fixed Target Experiments

- Lower center-of-mass energy than colliding beams
- Typically higher luminosity (high particle density in a target !)
- Good for studying target (e.g. proton) structure
- Good for studying production mechanisms, polarization variables

Fixed Target Detectors

September 30, 2013

A (typical?) fixed-target detector

CLAS12 detector at Jlab

17

Specialized Detector Types by Measurement Goal

- 1. Tracking chambers for charged particles
 - trajectory through magnetic field
 - momentum, angle of charged track
- 2. Timing counters
 - determine elapsed time-of-flight
 - path length, momentum à b, mass
- 3. Velocity detectors
 - use 'Cerenkov' light for direct b measurement
- 4. Energy deposition
 - 'calorimeter' measures energy of neutral particles

Primary Particle Interactions

Useful Formulas

Energy loss = 2 MeV/g/cm (for minimum ionizing) ~1 interaction / 300 mm in gas ~100 electrons / cm in gas

$$N_{photons} \sim 2 * 10^4$$
 / cm transparency very important

Threshold: $V_{particle} / V_{light} > 1$

$$tanq_c = \sqrt{b^2 n^2 - 1}$$

$$\frac{d^2N}{dx\,dl} = \frac{2}{3}$$

September 30, 2013

Sub-Detector Fabrication

- Tracking chambers
 - Liquid: Bubble Chambers
 - Gaseous: Wire Chambers, GEM's, Micromegas
 - Solid-state: Silicon
- Timing counters
 - scintillator 'paddles' with PMT readout
- Velocity detectors
 - 'Cerenkov' light: threshold or imaging
- Energy deposition
 - 'shower counters', radiator + scintillator stack

Types of Tracking Chambers

- Wire Chambers (Geiger tubes to drift chambers)
 - gas amplification **à** signal
 - electron 'avalanche' in high-field near small-diameter wire
 - use 'time of arrival' to estimate 'distance of closest approach'
- Micro-pattern gas amplification devices
 - gas amplification \mathbf{a} signal
 - lithography techniques $\mathbf{\dot{a}}$ amplification and pick-up features
 - 'GEM's and 'Micromegas'
- Solid-State Detectors
 - etched and micro-fabricated Silicon structure
 - collect primary ions; no intrinsic amplification

'Geiger' tube

"drifting" of the electrons

the "avalanche" wire Radius at which E = i / mfpi ~ 20 eV close-up $mfp \sim 4 mm$ of wire Ecrit ~ 50 kV/cmevery mfp the number of electrons doubles rule of thumb: ~ 15 doublings gain doubles every for gain of $5 * 10^4$ 75 or 100 Volts

September 30, 2013

Ernest Marsden

"drifting" of the electrons

wire at positive voltage

electrons drift to the wire
strike a molecule every 4 mm
velocity ~ 50 mm / ns

•New Idea - increase the accuracy of the tube by measuring the time difference between the wire signal and another prompt signal

à name 'drift chamber'

September 30, 2013

Nobel Prize Winner

Georges Charpak:

-inventor of the multi-wire proportional chamber 1992 Nobel Prize

-in a key 1968 paper, he also pointed the way to using drift time to improve measurement accuracy

"all-wire" drift chamber

wires in layers "brick-wall" fashion

how tracking works

 \sum

drift velocity calibration necessary

September 30, 2013

CLAS12 DC Design Decisions

solenoidal shield	necessary for 10 ³⁵
fwd./bck. separation	fwd. trks.; magnet interactions
high ∫B·dl torus	good dp/p for fwd. tracks
6x6 layers	robust track-finding
+/- 6º stereo	better f resolution; more ambigs.
planar; self-supporting	identical cells, easy to calibrate,
	survey, repair
112 wires/layer	cell-size; cost
30 mm sense wire	faster, linear xvst, strong, more reliable
92/08 Ar:CO ₂	stringing
on-chamber amplifiers	long cable runs
re-use hv, lv, ADB, TDC	lots of spares; cost

Use Lithography to Replace Wires!

Micro-pattern gas detectors

- No wires to break, accurate patterns, fast ion clearing, anode at ground
- Ideal for TPC's; not as uniform as wires
- Less multiple scattering than Silicon
- Multi-GEM's -> less ion feedback
 - more stable at same gain
- shape of dielectric important
- Micromegas w/ resistive anodes -> competitive with GEM's
- Flexible readout schemes !

$G_{as}E_{lectron}M_{ultiplier} \, Detector$

Drift region: low field: few thousand V/cm High field in hole

- avalanche occurs in hole
- charge current induced on electrodes

MicroMeshGas Detector

Silicon Strip Detector

 \sum

How to measure x,y,z with straight stips (and read out in the back?)

September 30, 2013

 \mathcal{C}

Tracking Detectors: a Comparison

Detector Type	Basic measurement type	Principle of signal generation	Resolution	Remarks
Wire chamber	Proportional Counter		cell width/ $\sqrt{12}$	fast response
	Drift Chamber Electric field; gas		100 – 300 mm	inexpensive, detailed calibration
Micro- pattern gas Mi	GEM	amplification by 'avalanche'	~100 mm	complicated system
	MicroMegas		~100 mm	can spark
Solid- state	Silicon, diamond	Ion (or hole) drift; no internal amplification	~20 – 50 mm	expensive; large mult. scattering; low noise critical

Detector Purpose

- Tracking chambers
 - trajectory through magnetic field
 - momentum, angle of charged track
- Timing counters
 - determine elapsed time-of-flight
 - path length, momentum **à** b, mass
- Velocity detectors
 - use 'Cerenkov' light for direct b measurement
- Energy deposition
 - 'calorimetry' measure energy of neutral particles

Time of Flight test set-up

September 30, 2013

... how Photo-Multiplier Tubes work

- photon strikes cathode
- releases one or more electrons
- electric fields push electrons to first dynode
- 1 electrons releases 2
- go to next dynode
- • • •
- $gain = 2^n$

How to Measure Particle Mass?

$$p = m\gamma\beta \quad \rightarrow \quad m = \frac{p}{\gamma\beta}$$

Measure (p) and track length (D)with a tracking chamber Measure elapsed (time) with a scintillator counter,

$$\beta = \frac{D}{time} ; \quad \gamma = \sqrt{\frac{1}{1 - \beta^2}}$$
$$m = \frac{p}{\gamma\beta}$$

September 30, 2013

Particle Separation by TOF

Good particle identification

- good time resolution
- long flight-path
- here's an example from the CLAS detector: ~200 ps resolution, ~ 5m path length
- p/k/P separation to ~2GeV/c

$$p = m\gamma\beta \quad \rightarrow \quad m = \frac{p}{\gamma\beta}$$

$$\left(\frac{\delta m}{m}\right)^2 = \left(\frac{dp}{p}\right)^2 + \gamma^4 \left(\frac{\delta\beta}{\beta}\right)^2$$

September 30, 2013

Detector Purpose

- Tracking chambers
 - trajectory through magnetic field
 - momentum, angle of charged track
- Timing counters
 - determine elapsed time-of-flight
 - path length, momentum **à b**, mass
- Velocity detectors
 - use 'Cerenkov' light for direct b measurement
- Energy deposition
 - 'calorimetry' measure energy of neutral particles

Cerenkov Light Detectors

Pavel Cerenkov Discoverer of 'Cerenkov' radiation 1958 Nobel Prize

b-dependence: Cerenkov Light

Angle of emission becomes larger More light emitted; proportional to length of light-front Measure b-dependence !

Two Kinds of Cerenkov Counters

- Threshold counter
 - less massive particle produces light
 - heavier particle above threshold
- "RICH" Ring Imaging Cherenkov

RICH Detector

Measure circle of photons

Detector Purpose

- Tracking chambers
 - trajectory through magnetic field
 - momentum, angle of charged track
- Timing counters
 - determine elapsed time-of-flight
 - path length, momentum **à b**, mass
- Velocity detectors
 - use 'Cerenkov' light for direct b measurement
- Energy deposition
 'calorimetry' measure energy of neutral particles

Electromagnetic Calorimeters

- ... also known as `shower counters'
 - entering particles initiate an electromagnetic shower (lead plates)
 - ionization à scintillator or Cerenkov light
 - measure light **à** energy deposited
- Determine 'cluster' position
- Energy and position of neutral shower

... how to build a shower counter

... building a shower counter, cont.

- stack layers of scintillator
- lead sheets interleaved
- add readouts on 3 sides
- à cluster position and energy

Particle Detectors: a Comparison

Detector Type	Measurement Type	Signal Generation	Remarks
Tracking (gas)	Spatial position	Ionization, gas amplification	Positive ions drift slowly, local "dead time" for wire chamber
Tracking (solid state)	Spatial position	Ionization, charge collection	No internal amplification; good S/N essential
TOF	Flight time	scintillation	More light, less jitter
Cerenkov	Particle velocity	Coherent light emission	Since speed of light is frequency dependent, so is emission angle
Calorimeter	Energy deposition	Shower -> scintillation	"Dead" material can hide fluctuations

September 30, 2013

backups

Example: CMS detector

September 30, 2013

LHCb: beauty physics

asymmetric detector: optimized for detached vertices

September 30, 2013

HERMES detector at DESY

September 30, 2013

 \bigcirc

CLAS12 Central Detector

- 3 double-layers Silicon
- 3 double-layers MicroMeGas
- 1 layer TOF with double readout
- 3 layers
 Neutron
 Detector

examples of tracking, TOF, shower counter

Tracking Detectors: Wire Chambers

What is the purpose?

- to measure particle trajectories to determine the momentum

What is measured?

spatial positions along a trajectory
What provides the primary signal?
ionization of gas molecules

Electric Field Pattern & Strength

Small 'aspect ratio' for electronics

Mechanical issues important: attachments, survey holes, gas lines, cables, electronics boards

Designers have the coolest drawing packages: here we see a tricky docking maneuver between our vertex tracker and our first collection of drift chambers

Monolithic pixel detectors

Two-dimensional Readout Concepts

Other Types of Silicon Trackers

September 30, 2013

 \square

Optimizing Resolution

Tracking Technology

Advantages / Disadvantages

Wire Chambers	Spatial resolution: ~300 microns Low mass – low multiple scattering Inexpensive for large area coverage Sensitive to magnetic fields, hard to calibrate
Micro-Pattern Gas (GEM, Micromegas)	Better resolution; ~ $50 - 100$ microns Low mass – low multiples scattering Many output channels \rightarrow fairly expensive Sensitive to magnetic fields
Silicon Detectors	Good resolution; ~ 10 – 50 microns High multiple scattering – low-momentum Expensive for large areal coverage Needs careful attention to electronic noise

September 30, 2013

Energy deposited in scintillator

