Work of a Physicist

- Experiment design, analysis?
 - à mini-studies of technical issues
 - state the problem clearly
 - make (appropriate) approximations
 - do calculations
 - look for scaling laws, simple patterns in results
 - state conclusions clearly, including systematic errors
- Some real-life examples (of many!)

Particle Detector Optimization

• How To Design a Detector

Physics **à** Detector Specs. **à** Detector Design Concrete example: central tracking detector

- How to estimate, parameterize, model, scale, etc. to understand various real-life situations:
 - Effect of Changing Magnet Specs
 - change in cryostat size
 - change in expected B-field strength
 - Trade-offs between detectors
 - allotting space between CTOF and CND
- Mistakes to Avoid

CLAS12 Tracking: physics a design

Start from the Physics

- Physics constraints:
 - electron beam
 - higher momentum tracks, smaller cross-sections
- Detector goals:
 - good momentum and angular resolution
 - capability to run at $L=10^{35}cm^{-2}s^{-1}$, good vertex resolution, robust
- Detector design:
 - central solenoid and Moller absorber; forward torus
 - forward tracker: Si strips + 3 stations of drift chambers
 - central tracker: Si strips

Physics goals a general design spec's

Goals:	Specifications:
measure flux-factor	q ~ 1 mrad
accurately	dp/p < 1%
select an exclusive reaction	dp < .05 GeV/c
by missing momentum	$dq \ p < .02 \ GeV/c$
	sinq df p < .02GeV/c
small	$L = 10^{35}/cm^2/s$
cross-sections	high efficiency
good acceptance	Df ~ 50% at 5°

October 1, 2013

Tracking Specifications Summary

	Fwd. Tracker	Central Tracker
Angular coverage	5º – 40º (50% f -coverage at 5º)	35° – 125° (> 90% f -coverage)
Momentum resolution	dp/p < 1%	dp/p < 5%
q Resolution	1 mrad	5 – 10 mrad
f Resolution	1 mrad/sinq	5 mrad/sinq
Luminosity	10 ³⁵ cm ⁻² s ⁻¹	10 ³⁵ cm ⁻² s ⁻¹

\bigcirc

CLAS12 Tracker Early Design - 2007

Central tracker:

single-sided Si stripsbarrel: 4 x 2, fwd: 3 x 2

DC's: same concept as CLAS chambers

hexagonal cells
6 sectors, 3 regions
2 super-layers/region
6 layers/super-layer
112 wires/layer (24192)
angled endplates
on-board pre-amps

Discussion: physics a spec's a design

- are the tracking spec's adequate to do the physics?
 - (need feedback from proposers)
- what studies could confirm this?
 - specific studies with FASTMC; specifically, for an experiment with a charged track in the central region
- what are the options if the background rates are much higher than expected?
- what is the effect on the physics if the resolution went up by 1.5? if the minimum lab. angle were 6°? or some other moderate change to the spec's?

Silicon Vertex Tracker: Conceptual Design

- Polygons formed from identical modules
- Concentric 'rings'
- Good resolution in f
- Small-angle stereo means poor Z and q resolution

October 1, 2013

SVT: spec's a design concepts

 \bigcirc

Specifications:	Central Design Features
$L = 10^{35}/cm^2/s$	many strips
-solenoidal shield	small stereo angle (fewer
-separated fwdbck.	ambiguities)
- large backgrounds	four 2-layer superlayers
good d p/p, dq	5 T central field
	75 mm readout pitch
	$dp/p \sim 1/(r_{in} - r_{out})^2$
	+/- 1.5° stereo angles
good acceptance	butt-joint design
	wire-bonded staves
reliability	identical sensor cards

SVT Design Decisions

 \sum

single-sided strips	mature technology; more material
75 mm strip pitch	read out: 150 mm
4x2 (SVT); 3x2 (FSVT)	robust track-finding
only two sensor types	rectangular (SVT)
	trapezoidal (FSVT)
1.5° (stereo): SVT	good enough; dq ~ df
9º (stereo): FSVT	fits 20-gon; too many ambig.'s ?
butt-joint construction	simple; easy to simulate
wire-bonded staves	need good mechanical support
SVX4 chips	well-known

Major Questions: SVT design

- double-layer technology has less multiple scattering - why not use it?
- isn't 6 layers in fwd. direction overkill? how many are needed?
- is the clocking of the central polygon optimal to minimize dead areas?
- why have we chosen SVX4? what is its time window and charge sensitivity?
- is wire-bonding too risky?
- place for MicroMegas? what about FSVT?

Effect of multiple scattering?

2008 study of effect of doubling Silicon thickness: comparing 0.1 0.02 resolutions for double-sided vs. 0.09 0.018 dp/pivs. p dth(rad) vs. p 0.08 0.016 single-sided 0.07 0.014 0.06 0.012 0.05 0.01 affects dp/p for low 0.04 • 800.0 0.03 0.006 momentum tracks 0.02 0.004 0.01 0.002 dp/p at 0.4 GeV/c increases: ۲ 0 n 0.51.5 2 2.5 0.51.5 2.52.5 **à** 3.2% due to *doubling* $\times 10^{-2}$ of Si 0.12 dx (cm) vs. p 0.1 dp/p at 0.4 GeV/c increases • Comparison of single side 0.08 from 3.2 **a** 3.4% due to versus double sided. single sided (solid) 0.06 doubling of C double sided (dashed) 0.04 small effect; go single-sided 0.02 0 0.51.5 2.5October 1, 2013

Will SVT work at $L = 10^{35}/cm^2/s$?

Rate effects: fake tracks, stereo angle

High background

- problem is NOT dead-time
- problem is FAKE rates

Fake tracks

- "sister" tracks (share hits)
- "independent fakes" are at low momentum

October 1, 2013

Effect of mis-alignment?

Study of effect of "region" mis-alignment in azimuthal and radial direction

•20 micron azimuthal misalignment à 2% momentum shift at 1.6 GeV/c

- 500 micron radial misalignment
 2% momentum shift
- 750 micron misalignment in z-position
 à 2% momentum shift
- **à** azimuthal alignment is critical
- •Write fabrication specifications

Position Accuracy*

ctors

	Sensor position accuracy (µm) Module Fabrication***	Module position accuracy (µm) Detector Assembly***	Physics Requirement**
Х	5 -10 ?	15 – 20 ?	20
Y	250 ?	250 ?	500
Z	10 – 20 ?	50 ?	750

* Accuracy numbers given at the "1-S" level
** To achieve (dp/p < 2%) for momenta < 1.6 GeV/c
*** After construction and survey

à azimuthal tolerance tight à accurate construction and survey needed

- 40 - 10 - 10 - 10 - 10 - 10 - 10 - 10	
	Z
	\uparrow
	X ← Z
	X

BST Resolution: Systematic Effects

Physics a tracking requirements a detector specifications

Expected Resolution à meets physics requirements

Granularity (# channels) **à** <u>can run at L = 10^{35} cm⁻²s⁻¹</u>

Effects on resolution (design change, fabrication tolerance)

- Increased multiple scattering: small effect

- Construction mis-alignment: 'extra' momentum resolution < 2%

"Design Validated"

CLAS12 Central Tracking Add Micromegas ?

Two options:

- SVT- only
 - Four double-layers (+/- 1.5° stereo), central (35-135°) region
 - Three double-layers (+/- 9° stereo), forward (5- 40°) region
 - Central part: rectangular sensors as polygonal "cylinders"
 - Forward part: trapezoidal sensors arranged in disks
- Mixed SVT Micromegas
 - Central: two double layers SVT, three double layers Micromegas
 - Forward: ?, three double layers Micromegas in a disk

Résultats

3 dispositifs ont été étudiés:

- 4x2 SI (a = $\pm 1.5^{\circ}$, et s = 43 mm)
- $-4x2 MM (a = 0 et 90^{\circ})$

- 2x2 SI+ 3x2 MM

Silicon + Micromegas ?

- simulations show mixed solution best, but
 - can Micromegas work with a cylindrical geometry?
 - can Micromegas work in a high, transverse B-field ?
- Review the technology

Prototype #1 : Y Cylinder

v1 mechanical structure just arrived for laying/implantation studies

Monday Feb. 18th : Drift Al-mylar electrode laying (pillars implantation)

October 1, 2013

Test of a resistive detector

\rightarrow Resistive detectors planned for the Forward MIM, and maybe the Barrel

\rightarrow 1st small prototype

- Same signal shape as for non resistive
- Excellent homogeneity so far
- Gains up to 40,000 (!)
- Ageing study in progress:

already ~ 3 years of CLAS12 operation

- No visible sparks \Rightarrow no dead time
- May not need chip protections \Rightarrow higher S/B (+17%)

Summary: CLAS12 Vertex Detector Design

- Early studies established detector specifications
- Silicon-only design:
 - good rate dependence, good vertexing
 - moderate dp/p, poor q resolution (small-angle stereo)
- **à** study combined Silicon + Micromegas
 - simulations showed mixed-system was best
 - review identified magnetic-field dependence and sparking as concerns
 - extensive prototyping and resistive-readout design resolved issues
- spec's à concept à simulate, proto-type à repeat

Effect of Torus Outer Dimensions on CLAS12 Tracking

What cryostat dimensions are important?

- hub radius, cryostat width

How does this affect drift chamber placement?

- the "region 2" chamber moves out radially

- the "coil shadow" increases

How does this affect forward tracking?

- no effect on resolution or efficiency
- decreases solid angle
 - no effect on momentum or polar angle coverage
 - reduces azimuthal coverage

Torus Geometry

Beam's eye view of torus with one chamber installed

> If cryostat width increases, chamber moves outward; larger 'shadow'

How does this affect solid angle ?

Example of a track on the edge of CLAS12 acceptance: -an elastically scattered electron at 7°, 10.1 GeV/c

ànote that if a track passes through region 1 and region 3, it goes through region 2 with more than 10 cm to spare

àno effect on p or q acceptance

àreduced azimuthal coverage due to 'coil shadowing'

Particle Detectors

CLAS12 Azimuthal Coverge

Fractional solid angle for nominal width (11.4 cm) and two examples of coil width increase

> 5°:.50 à .46 à .28 for width increase of 1 or 5 cm., resp. à 8% / 44% loss

October 1, 2013

Effect on Accepted Number of Events?

Experiment type	Effect of 1cm Increase	Effect of 2cm Increase
7 ⁰ Electron	6%	12%
5º Electron (outbending)	8%	16%
20º Hadron	2%	4%
20º Photon	2%	4%
e'K+P(p⁻)	10% (12% outbending)	20% (24% outbending)
e'Pg	10% (12% outbending)	20% (24% outbending)

Summary: Effect of Changing Cryostat Width

- What cryostat dimensions are important?
- cryostat width directly affects dead 'shadow' area How does this affect drift chamber placement?
 - the "region 2" chamber moves out radially
- How does this affect forward tracking?
 - no effect on resolution or efficiency
 - decreases solid angle
 - **à** ~ 10 12 % loss in solid angle for a 1 cm increase
 - **à** approximately linear with size of change

Effect of Reducing B-Field by 25%

- 25% reduction in B-field increases dp/p by 30% and increases missing-mass resolution
- For an 11 GeV electron beam, total hadronic mass greater than 1.5 GeV, and a p⁺N final state with the p⁺ detected, the RMS of the mass distribution increases from 18 MeV to 23 MeV
- à lower signal to noise ratio, and a worse statistical error.
- Assume S/N 1:1 Statistical error is $\sim \sqrt{S+B}/S$
- 30% increase in signal width will have the same statistical error if the beam time is increased by 15%.

Settling a 'SpaceWar'

"apples" vs. "oranges"

- 4mm thickness at stake
- CTOF ~ 3cm, CND ~ 10CM
- reducing CND by 4mm à lowers neutron efficiency by 4%
- reducing CTOF by 4mm à worsens its timing resolution from 60 to 65 ps
 Neither big, but which is worse?

change of resolution à change of momentum range

- How do we analyze an experiment?
 - measure K^+ with $p^+/K^+ = 5:1$
 - CTOF: 30 cm flight path,
 60ps resolution
- 3s separation for 65ps case at .70 GeV/c; moves to .74 GeV/c for 60ps resoltuion
- **à** extended momentum range from .7 to .74

October 1, 2013

change of resolution **à** change of efficiency

October 1, 2013

60 à 65 ps; 90 à 84% efficiency

60ps **à** "10% detector" For some cut value, we have a 10% background and a 10% inefficiency; 90% efficiency., S/N = 9:1

65ps **à** "13% detector" 87% efficiency, S/N = 6.7:1

Raise cut to achieve 9:1 **à** K efficiency drops to 84%

Time Cut Value (ns)

How Do Detectors Fail *?

- design flaws
- fabrication flaws
- bad environment
 - high background rate
 - electronic noise
 - magnetic field

* or fail to work properly

Prototype prototype prototype prototype

October 1, 2013

The "Large Blue Prototype"

October 1, 2013

Prototype: reveals design flaws

5 Improvements: Lots of Stress

Parting Words

When I was a post-doc at U-Chicago, I had a colleague, Carla Grosso-Pilcher. Her 5-year old son, Marco, told her he had done an experiment.

"What did you learn?", Carla asked. "Never make the wrong mistake."

backups

CLAS12 Experiment Characteristics

- electron beam
- small cross-sections (exclusive reactions, Q²-dep.)
- measure hadronic state
 - reject extra particles (missing mass)
 - other cuts: co-planarity, etc.
- forward-going particles
 - small laboratory angles
- broad coverage in center-of-mass

early GEANT4 'sketch'

