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Abstract

These lectures were given at the Ecole Joliot Curie in the autumn of 2013
and are directed at a level suitable for graduate students in High Energy Physics.
They are intended to give an introduction to the theory and phenomenology of
general-purpose Monte Carlo event generators like HERWIG, PYTHIA, or SHERPA,
focusing on collider physics applications. The principles underlying parton-
shower calculations are examined, followed by an introduction to models of
hadronization and the underlying event. We end with some brief comments
on generator tuning. The aim is to bring the reader to a level where informed
decisions can be made concerning different approaches and their uncertainties.
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1 Introduction

When probed at very short wavelengths, QCD is essentially a theory of free ‘partons’
— quarks and gluons — which only scatter off one another through relatively small
quantum corrections, that can be systematically calculated. At longer wavelengths,
of order the size of the proton ∼ 1fm = 10−15m, however, we see strongly bound
towers of hadron resonances emerge, with string-like potentials building up if we
try to separate their partonic constituents. Due to our inability to perform analytic
calculations in strongly coupled field theories, QCD is therefore still only partially
solved. Nonetheless, all its features, across all distance scales, are believed to be
encoded in a single one-line formula of alluring simplicity; the Lagrangian of QCD.

The consequence for collider physics is that some parts of QCD can be calculated
in terms of the fundamental parameters of the Lagrangian, whereas others must be
expressed through models or functions whose effective parameters are not a priori
calculable but which can be constrained by fits to data.

However, even in the absence of a perturbative expansion, there are still sev-
eral strong theorems which hold, and which can be used to give relations between
seemingly different processes. (This is, e.g., the reason it makes sense to constrain
parton distribution functions in ep collisions and then re-use the same ones for pp
collisions.) Thus, in the sections dealing with phenomenological models we shall
emphasize that the loss of a factorized perturbative expansion is not equivalent to a
total loss of predictivity.

The field of QCD phenomenology is currently experiencing something of a revolu-
tion. On the perturbative side, new methods to compute scattering amplitudes with
very high particle multiplicities are being developed, together with advanced tech-
niques for combining such amplitudes with all-orders resummation frameworks (like
parton showers). On the non-perturbative side, the wealth of data on soft-physics
processes from the LHC is forcing us to reconsider the reliability of the standard
fragmentation models, and relations between heavy-ion collisions and pp ones are
providing new insights into the collective behavior of hadronic matter. The study of
cosmic rays impinging on the Earth’s atmosphere challenges our ability to extrapo-
late fragmentation models to ultra-high energies. And finally, dark-matter annihi-
lation processes in space may produce hadrons, whose spectra are sensitive to the
modeling of fragmentation.

In the following, we shall focus on mainstream QCD phenomenology, in the con-
text of collider physics. This includes factorization, parton showers and matching,
hadronization, the so-called underlying event, and event-generator tuning. While
not covering everything, hopefully these topics can also serve at least as stepping
stones to more specialized issues that have been left out.

Several of the discussions below rely on material from the PDG review on Monte
Carlo Event Generators [1] and on the more comprehensive review by the MCnet
collaboration [2]. The latter also contains brief descriptions of the physics imple-
mentations of each of the main general-purpose event generators, together with a
guide on how to use them, and a collection of comparisons to important experi-
mental distributions. Additional material can also be found in longer writeups from
lectures given at the 2010 ESHEP [3] and 2012 TASI schools [4].
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Relative uncertainty with n points 1-Dim d-Dim neval/point

Trapezoidal Rule 1/n2 1/n2/d 2d

Simpson’s Rule 1/n4 1/n4/d 3d

Monte Carlo 1/
√
n 1/

√
n 1

Table 1: Relative uncertainty after n evaluations, in 1 and d dimensions, for two traditional
numerical integration methods and stochastic Monte Carlo. The last column shows the num-
ber of function evaluations that are required per point.

1.1 The Monte Carlo Method

A ubiquitous problem in fundamental physics is the following: given a source located
some distance from a detector, predict the number of counts that should be observed
within the solid angle spanned by the detector (or within a bin of its phase-space
acceptance), as a function of the properties of the source, the intervening medium,
and the efficiency of the detector. I.e., the task is to compute integrals of the form

NCount(∆Ω) =

∫

∆Ω

dΩ
dσ

dΩ
, (1)

with dσ a differential cross section (or rate) for the process of interest.
In particle physics, phase space has three dimensions per final-state particle (mi-

nus four for overall four-momentum-conservation). Thus, for problems with more
than a few outgoing particles, the dimensionality of phase space increases rapidly. At
LEP, for instance, the total multiplicity of neutral + charged hadrons (before weak
decays) was typically ∼ 30 particles, so about 86 dimensions.

The standard 1D numerical-integration methods give very slow convergence rates
for higher-dimensional problems. For illustration, a table of convergence rates in 1
and d dimensions is given in tab. 1, comparing the Trapezoidal (2-point) rule and
Simpson’s (3-point) rule to random-number-based Monte Carlo. Going from 1 to d
dimensions, the convergence rate of the n-point rules all degrade (while the number
of function evaluations required for each “point” simultaneously increases). The MC
convergence rate, on the other hand, remains the simple stochastic 1/

√
n, and each

point still only requires one function evaluation. These are some of the main rea-
sons that MC is the preferred numerical integration technique for high-dimensional
problems. In particle physics, virtually all numerical cross-section calculations are
based on Monte Carlo techniques in one form or another, examples of simple generic
algorithms being RAMBO [5] (flat phase-space scan) or VEGAS [6, 7] (automated
importance-sampling).

Finally, the functional form of dσ/dΩ can become very complicated, and substan-
tial simplifications can be obtained by splitting it into many, nested, pieces, each with
fewer dimensions and simpler structures. This can formally be achieved by writing
it on a factorized form and casting the result as a Markov Chain, admitting iterative
solutions. Moreover, the random phase-space vectors this generates can be re-used
in many ways, for instance to compute many different observables simultaneously
and/or to hand “events” to propagation and detector-simulation codes.

3



“This risk, that convergence is only given with
a certain probability, is inherent in Monte
Carlo calculations and is the reason why this
technique was named after the world’s most
famous gambling casino. Indeed, the name is
doubly appropriate because the style of gam-
bling in the Monte Carlo casino, not to be con-
fused with the noisy and tasteless gambling
houses of Las Vegas and Reno, is serious and
sophisticated.”

F. James, “Monte Carlo theory and practice”,
Rept. Prog. Phys. 43 (1980) 1145

Figure 1: Left: The casino in Monaco. Right: extract from [8] concerning the nature of
Monte Carlo techniques.

The price of using random numbers is that we must generalize our notion of
convergence. In calculus, we say that a sequence {A} converges to B if an n exists
for which the difference |Ai>n − B| < ε for any ε > 0. In random-number-based
techniques, we cannot completely rule out the possibility of very pathological se-
quences of “dice rolls” leading to large deviations from the true goal, hence we are
restricted to say that {A} converges to B if an n exists for which the probability for
|Ai>n − B| < ε, for any ε > 0, is greater than P , for any P ∈ [0, 1] [8]. This risk, that
convergence is only given with a certain probability, is the reason why Monte Carlo
techniques were named after the famous casino in Monaco, illustrated in fig. 1.

1.2 A Brief History of Event Generators

The task of a Monte Carlo event generator is to calculate everything that happens
in a high-energy collision, from the hard short-distance physics to the long wave-
lengths of hadronization and hadron decays. Obviously, this requires some com-
promises to be made. General-purpose generators like HERWIG [9], PYTHIA [10],
and SHERPA [11], start from low-order (LO or NLO) descriptions of the perturbative
hard physics and then attempt to include the “most significant” corrections, such as
higher-order matrix-element corrections and parton showers, resonance decays and
finite-width effects, underlying event, beam remnants, hadronization, and hadron
decays. These corrections must be taken into account to complete our understand-
ing of QCD and connect the short-distance physics with macroscopic experiments.

Each of the generators had slightly different origins, which carries through to the
emphasis placed on various physics aspects today:

• PYTHIA. Successor to JETSET (begun in 1978). Originated in hadronization
studies. Main feature: the Lund string fragmentation model.

• HERWIG. Successor to EARWIG (begun in 1984). Originated in perturbative
coherence studies. Main feature: angular-ordered parton showers.

• SHERPA. Begun in 2000. Originated in studies of the matching of hard-emission
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matrix elements with parton showers. Main feature: CKKW matching.

There is also a large number of more specialized generators, mainly for hard pro-
cesses within and beyond the SM, a few that offer alternative shower models, and
ones specializing in soft-inclusive and/or heavy-ion physics.

An important aspect of contemporary generators is the ability to combine spe-
cialized ones with general-purpose ones, via interfaces. The most common interface
between partonic hard-process and parton-shower generators is the Les Houches
Event File (LHEF) standard, defined in [12, 13] and “spoken” by most modern gen-
erator tools. For interfaces to experimental analysis packages (like RIVET [14]) and
detector simulations (like GEANT [15]), typically the HepMC standard is used [16].

2 Perturbative QCD and Parton Showers

In this section, we discuss the perturbative aspects of QCD and their modeling in
Monte Carlo Event Generators. We focus in particular on initial- and final-state
radiation (ISR and FSR), as represented by parton showers.

We start off, in section 2.1, by giving some general remarks about scaling in QCD
and the strong coupling, before turning to the main issues in sections 2.2 – 2.6.
We then round off the discussion with a brief summary of how matrix-element and
parton-shower calculations can be combined to give a more accurate description of
hard, wide-angle radiation, in section 2.7.

We emphasize that the focus on perturbative QCD (pQCD) in this section implies
that we take all dimensionful scales to be much larger than O(1 GeV).

2.1 Scaling and the Strong Coupling

To first approximation, QCD is scale invariant. That is, if one “zooms in” on a QCD jet,
one will find a repeated self-similar pattern of jets within jets within jets, reminiscent
of fractals. In the context of QCD, this property was originally called Bjorken scaling.
The running of the coupling, αs(Q2), breaks this invariance, but the limit of exact
Bjorken scaling — QCD at fixed coupling — still provides useful intuition about what
to expect.

In the scale-invariant limit, properties of interactions are determined only by
dimensionless kinematic quantities, such as scattering angles (pseudorapidities) and
ratios of energy scales. For applications of QCD to high-energy physics, an important
consequence of Bjorken scaling is thus that the rate of bremsstrahlung jets, with
a given transverse momentum, scales in direct proportion to the hardness of the
processes that produce them. This agrees well with our intuition about accelerated
charges; the harder you “kick” them, the harder the radiation they produce.

On top of that, the running coupling will introduce a dependence on the abso-
lute scale, implying more radiation at low scales than at high ones. The running is
logarithmic with energy and is governed by the so-called beta function,

Q2 ∂αs
∂Q2

=
∂αs

∂ lnQ2
= β(αs) = −α2

s(β0 + β1αs + β2α
2
s + . . .) , (2)
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Figure 2: Illustration of the running of αs at 1- (open circles) and 2-loop order (filled circles),
starting from the same value of αs(MZ) = 0.12.

with LO (1-loop) and NLO (2-loop) coefficients

β0 =
11CA − 4TRnf

12π
=

33− 2nf
12π

, (3)

β1 =
17C2

A − 10TRCAnf − 6TRCFnf
24π2

=
153− 19nf

24π2
, (4)

with CA = NC = 3, CF = (N2
C − 1)/(2NC) = 4/3, and TR = 1/2 for QCD in the

standard normalization conventions (see, e.g., [17]). In the β0 coefficient, the first
term is due to gluon loops while the second is due to quark ones (proportional to the
number of quark flavours running in the loops, nf). Similarly, the first term of the
β1 coefficient arises from double gluon loops, while the second and third represent
mixed quark-gluon ones. See, e.g., the PDG review on QCD [1] for more.

Numerically, the value of the strong coupling is usually specified by giving its
value at the specific reference scale Q2 = M2

Z , from which we can obtain its value at
any other scale by solving eq. (2),

αs(Q
2) = αs(M

2
Z)

1

1 + β0αs(M2
Z) ln Q2

M2
Z

+O(α2
s)
, (5)

with higher-order relations available, e.g., in [18]. A comparison of one- and two-
loop running, in both cases starting from αs(MZ) = 0.12, is given in fig. 2. As is
evident from the figure, the 2-loop running is somewhat faster than the 1-loop one.

Now consider what happens when we run the coupling towards smaller energies.
Taken at face value, the numerical value of the coupling diverges rapidly at scales
below ∼ 1 GeV. To make this divergence explicit, one can rewrite eq. (5) in the
following form (ignoring terms beyond β0 for simplicity),

αs(Q
2) =

1

β0 ln Q2

Λ2

, (6)
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Parton Distribution Functions

Hadrons are composite, with time-dependent structure:

u
d
g
u

p

fi(x, Q2) = number density of partons i

at momentum fraction x and probing scale Q2.
Linguistics (example):

F2(x, Q2) =
∑

i

e2i xfi(x, Q2)

structure function parton distributions

Figure 3: Illustration of partonic fluctuations inside a proton beam (from [19]).

where Λ ∼ 200 MeV specifies the energy scale at which the perturbative coupling
would nominally become infinite, called the Landau pole. Note, however, that this
only parametrizes the purely perturbative result, which is not reliable at strong cou-
pling, so eq. (6) should not be taken to imply that the physical behavior of full QCD
should exhibit a divergence for Q→ Λ.

2.2 Factorization and PDFs

In high-energy scattering problems involving hadrons in the initial state, we imme-
diately face the complication that hadrons are composite, with a time-dependent
structure illustrated in fig. 3; there are partons within clouds of further partons,
constantly being emitted and absorbed. Thus, before we can use perturbatively
calculated partonic scattering matrix elements, we must first address the partonic
structure of the colliding hadron(s).

The factorization theorem [20] expresses the independence of long-wavelength
(soft) structure on the nature of the short-distance (hard) process. Originally formu-
lated for DIS, factorization allows us to write the cross section for lepton-hadron scat-
tering as a convolution of a non-perturbative but universal (i.e., process-independent)
parton density function (PDF) and a perturbatively calculable partonic scattering
cross section. Denoting the fraction of the hadron momentum carried by parton i by
xi,

~pi = xi ~ph , (7)

we may write the lepton-hadron cross section as (see, e.g., [17,21]),

σ`h =
∑

i

∫ 1

0

dxi

∫
dΦf fi/h(xi, µ

2
F )

dσ̂`i→f (xi,Φf , µ
2
F )

dxi dΦf

, (8)

with i an index running over all parton types in the incoming hadron and f enumer-
ating all possible (partonic) final states, with Lorentz-invariant phase space, Φf .

The parton density functions (PDFs), fi/h, parametrize the distribution of partons
inside the target hadron, h. They are not a priori calculable and must be constrained
by fits to data. For a discussion of PDFs in the context of MC generators, see, e.g.,
my TASI lectures [4]. A complementary useful discussion of the pros and cons of
different choices of the factorization scale, µF , can be found in the TASI lectures by
Tilman Plehn [22]. A more formal introduction to factorization and PDFs is given in
the TASI lectures by George Sterman [23].
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Figure 4: Coefficients of the perturbative series covered by LO calculations. Left: F pro-
duction at lowest order. Right: F + 2 jets at LO, with the half-shaded box illustrating the
restriction to the region of phase space with 2 resolved jets. (Photo from nobelprize.org).

The partonic cross section, dσ̂, knows nothing of the target hadron apart from the
fact that it contained the struck parton. It is calculable within perturbation theory,
as we shall presently discuss.

2.3 The Hard Scattering: Fixed-Order QCD

Our main tool for solving QCD at high energy scales, Q � ΛQCD, is perturbative
quantum field theory, the starting point for which is Matrix Elements (MEs) which
can be calculated systematically at fixed orders in the strong coupling αs. At least at
lowest order (LO), the procedure is standard textbook material [24] and it has also
by now been highly automated, by the advent of tools like MADGRAPH [25, 26] and
others [9,27–34]. Here, we require only that the reader has a basic familiarity with
the methods involved (based, e.g., on [17,24]).

Importantly, only infrared safe observables are perturbatively calculable. IR safety
implies two things (see, e.g., [35, Chapter 5]): the observable must not change value
if we add any number of infinitely soft partons (invariance under soft radiation),
and it must also not change value if we split any parton into an arbitrary number of
collinearly moving ones, preserving the total energy and momentum (invariance un-
der collinear splittings). These requirements are intimately related to the conditions
for the sum over degenerate quantum states to produce finite total cross sections,
as encapsulated by unitarity (probability conservation) and expressed by the Bloch-
Nordsieck [36] and Kinoshita-Lee-Nauenberg [37,38] theorems.

A convenient way of illustrating the terms of the perturbative series that a given
calculation includes is shown in fig. 4, for an arbitrary final state: F . In the left-hand
pane, the shaded box corresponds to the lowest-order “Born-level” matrix element
squared. This coefficient is non-singular and hence can be integrated over all of
phase space, which we illustrate by letting the shaded area fill all of the relevant
box. A different kind of leading-order calculation is illustrated in the right-hand
pane of fig. 4, where the shaded box corresponds to the LO matrix element squared
for F + 2 jets. This coefficient diverges in the part of phase space where one or both
of the jets are soft or collinear, and hence integrations can only cover the hard part
of phase space, which we reflect by only shading the upper half of the relevant box.

Since we talk about collinear and soft divergences, cuts on angles and energies
and/or cuts on combinations, like transverse momenta, can be used to cut away the
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problematic regions of phase space. Recall, however, that pQCD is approximately
scale invariant. This strongly implies that any regularization cut on a dimensionful
quantity, like an energy or a transverse momentum, should in fact be formulated
as a ratio of scales, rather than as an absolute number. For example, a jet with
p⊥ = 50 GeV would be considered hard and well-separated if produced in association
with an ordinary Z boson (with hard scale QF = MZ = 91.2 GeV), while the same
jet would be considered soft if produced in association with a 900-GeV Z ′ boson.

The point is that, if p⊥ � QF , logarithmic cross-section enhancements of the type

αns lnm≤2n

(
Q2
F

p2
⊥

)
(9)

will generate progressively larger corrections, order by order, which invalidate any
attempt at a fixed-order truncation of the perturbative series. A good rule of thumb
is that you must place your cuts on the matrix element such that σF+1(Qcut) ∼< αsσF ,
for fixed-order perturbation theory to be reliable (i.e., each successive term in your
Taylor series should be suppressed by O(αs)).

In the discussion of parton showers in section 2.5, we shall see how the region of
applicability of perturbation theory can be extended to include situations with large
scale hierarchies. First, however, we must understand better the origin and physics
of the infrared singularities which are responsible for the logarithms in eq. (9).

2.4 Infrared Structure of QCD

The infrared structure of perturbative QCD amplitudes is governed by extremely
simple physics: propagators, whose (p2−m2) denominators vanish when they go on
shell. These terms are independent of the particular process they are embedded in,
and hence the IR singularities they generate are universal. They can therefore be
classified using a set of universal, process-independent functions.

Historically, the first such set of functions to be written down were the Dokshitzer-
Gribov-Lipatov-Altarelli-Parisi (DGLAP) splitting kernels [39–41]. They can be de-
rived in the limit that two (or more) partons become collinear to each other, so that
their invariant mass vanishes. If the two partons could physically have originated
from a single one, then there is at least one Feynman diagram which has the corre-
sponding on-shell propagator, and, since this diagram will be singular, interference
effects with any other possible (non-singular) quantum histories are irrelevant —
only the singular diagram squared need be retained. Moreover, the presence of the
on-shell propagator implies that the amplitude squared factorizes as follows,

|MF+1(. . . , pi, pj . . .)|2
i||j→ g2

s Cij
PI→ij(z)

sij
|MF (. . . , pi + pj, . . .)|2 , (10)

where g2
s = 4παs is the strong coupling, PI→ij(z) is the splitting kernel1 for I → ij,

and z ∈ [0, 1] denotes the fraction of the momentum of the parent parton carried by
parton i, with parton j taking a fraction 1−z (so that pI = pi+pj). The colour factor,
Cij, is NC for g → gg, CF for q → qg, and TR for g → qq̄.

1See [2,17,42] for their functional forms. They are not needed to follow this writeup.
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Figure 5: Squared diagrams illustrating collinear (left) and soft (right) singularities.

The basic origin of the collinear singularities is illustrated by the diagram squared
in the left-hand pane of fig. 5. In the limit that partons i and j are collinear to each
other, sij → 0, the propagator of the parent parton, I, goes on shell; the singularity
of the associated propagator factor is the origin of the 1/sij singularity in eq. (10).

The right-hand pane of fig. 5 illustrates the other possible IR singularity, which
is not directly captured by the DGLAP functions: interference between a diagram
with emission from parton I and one with emission from parton K. The resulting
term has propagator singularities when both partons I and K go on shell, which can
happen simultaneously if parton j is soft (i.e., has vanishing energy). This generates
a universal singularity called the soft eikonal factor or the dipole factor. Thus, for
each pair of colour-connected partons I and K in F , the squared amplitude for F +1
gluon, |MF+1|2, will include a factor

|MF+1(. . . , pi, pj, pk, . . .)|2
jg→0→ g2

s NC
2sik
sijsjk

|MF (. . . , pI , pK , . . .)|2 , (11)

where i and k represent partons I and K after the branching (in the soft limit, i = I
and k = K). Mass effects are neglected in the above formula but can be taken
systematically into account [43, 44]. The colour factor, NC , is valid for the leading-
colour contribution, regardless of whether the i and k partons are quarks or gluons;
the difference in colour factors, CA ∼ 2CF is due mainly to gluons being colour-
connected to two partons, while quarks are connected to only one. Subleading-
colour effects go beyond the discussion here.

To give an explicit example of how the soft and collinear singularities arise in the
context of a concrete physical process, consider the matrix elements squared for the
process Z0 → qgq̄, which is representative of a gluon being emitted from a colour-
connected qq̄ pair. For massless partons, this matrix element can be written [45]

|M(Z0 → qigj q̄k)|2

|M(Z0 → qI q̄K)|2
= g2

s 2CF




2sik
sijsjk︸ ︷︷ ︸
eikonal

+
1

sIK

(
sjk
sij

+
sij
sjk

)

︸ ︷︷ ︸
collinear


 . (12)

We recognize the universal eikonal soft factor from eq. (11) in the first term. The
two additional terms are less singular, and are required to obtain the correct collinear
(DGLAP) limits as sij → 0 or sjk → 0.
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Note that we could equally well have considered the process H0 → qgq̄. This
merely corresponds to choosing the initial qq̄ pair to be in an overall scalar state,
rather than in a vector one, which should not affect the (universal) singularities2.
The result would would then have come out as [44],

|M(H0 → qigj q̄k)|2

|M(H0 → qI q̄K)|2
= g2

s 2CF




2sik
sijsjk︸ ︷︷ ︸
eikonal

+
1

sIK

(
sjk
sij

+
sij
sjk

)

︸ ︷︷ ︸
collinear

+
2

sIK︸︷︷︸
finite


 . (13)

As expected, the singular terms are all the same as in eq. (12), but there is an
additional term +2/sIK . This term is non-singular (“finite”) over all of phase space.
Thus, we here see an explicit example that the singularities are process-independent
while non-singular terms are process-dependent.

The logarithms discussed in the previous section, and expressed by eq. (9) in
particular, arise if we try to integrate matrix elements like eqs. (12) or (13) over
the entire phase space. If the singularities at sij → 0, sjk → 0 are included in
the integration, we would end up with a double pole. If we instead regulate the
divergence by cutting off the integration at some minimal perturbative cutoff scale
µ2

IR, we end up with a logarithm squared of that scale. This is a typical example of
“large logarithms” being generated by the presence of scale hierarchies.

We now understand the fundamental origin of the IR singularities, why they
are universal, and why amplitudes factorize in the soft and collinear limits — the
singularities are simply generated by intermediate parton propagators going on shell,
which is independent of the nature of the hard process, and hence can be factorized
from it. Equivalently, when a parton goes on shell, it can propagate over very long
distances. Its subsequent breakup can therefore not depend on any of the short-
distance physics of the primary process (apart from what may be encoded in the
parton itself via entanglement, such as helicity and/or colour correlations).

Before we continue, it is worth noting that eq. (11) is often rewritten in other
forms to emphasize specific aspects of it. One such rewriting is thus to reformulate
the invariants sij in terms of energies and angles,

sij = 2EiEj (1− cos θij) . (14)

=⇒ dsij
sij

dsjk
sjk
∝ dEj

Ej

dθij
θij

+
dEj
Ej

dθjk
θjk

. (15)

This rewriting enables an intuitively appealing categorization of the singularities
as related to vanishing energies and angles, explaining why they are called soft
and collinear, respectively. Nonetheless, Lorentz non-invariant formulations come
with similar caveats as do gauge non-invariant formulations of quantum field the-
ory: while they can be practical to work with at intermediate stages of a calculation,
one should be careful with any physical conclusions that rely explicitly on them.

In this writeup, we shall therefore restrict ourselves to a Lorentz-invariant for-
malism based directly on the invariants, as pioneered by the dipole formulation of
QCD cascades by Gustafson [45] and formalized for QCD amplitudes by Kosower,

2At least not at the spin-averaged level. See [42] for a treatment of helicity-dependent structures.
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in antenna factorization [46–48]. (Note: to avoid confusion with other dipole-like
objects, we shall usually only use the word antennae in this writeup.) The functions
in square brackets in eqs. (12) & (13) are then called antenna functions, and describe
the IR structure of coherent 2→ 3 parton branching processes (here qI q̄K → qigj q̄k).
A convenient set of 2 → 3 (and 2 → 4) antenna functions that parametrize all the
(soft and collinear) singularities of QCD amplitudes through NNLO is given by “GGG”
in [48], and there is a corresponding simple factorization of phase space, based on
2→ 3 (and 2→ 4) on-shell kinematics (see section 2.6).

Another widely used set of functions and phase-space factorizations are the so-
called Catani-Seymour (CS) dipoles [49,50]. The distinction between CS dipoles and
antennae is basically that one antenna is made up of two CS dipole “ends”. At NLO,
however, there is no fundamental incompatibility — the antennae we use here can
always be partitioned into two CS dipole ends, if so desired.

2.5 Theoretical Basis of Parton Showers

Assume that we have computed the Born-level (LO) cross section for some process,
F , and that this process contains a number of coloured partons. For each pair of
(massless) colour-anticolour charges in F , we then know from the preceding section
that the LO cross section for F + 1 partons, dσ(0)

F+1, will include a factor

|M(0)
F+1|2 = g2

s NC

[
2sik
sijsjk

+ less singular terms

]
|M(0)

F |2 . (16)

As hinted at above, the real power of this result lies in the fact that it is universal.
Thus, for any process F , we can apply eq. (16) in order to get an approximation for
dσF+1 . We may then, for instance, take our newly obtained expression for F + 1
as our arbitrary process and crank eq. (16) again, to obtain an approximation for
dσF+2 , and so forth. This provides a very simple recursive strategy for generating
approximations to tree-level (LO) cross sections with arbitrary numbers of additional
legs. (The quality of the approximations will be discussed below.)

In order to obtain a truly all-orders calculation, however, tree-level expressions
are not enough, especially since our aim in this section is to address emissions of
relatively soft and/or collinear bremsstrahlung partons, for which the tree-level ex-
pressions are badly divergent, as discussed above. The key to obtaining meaningful
and finite cross sections that continue to be valid deep into the infrared regions
(though still only for scales� ΛQCD) is unitarity.

Unitarity (see section 2.3) implies that the singularities caused by integration
over the tree-level matrix elements must be canceled, order by order, by equal but
opposite-sign singularities in the virtual corrections at the same order. That is, from
eq. (16), we know that the 1-loop correction to dσF must contain a term,

2Re[M(0)
F M

(1)∗
F ] ⊃ −g2

s NC |M(0)
F |2

∫
dsij dsjk
16π2sijk

(
2sik
sijsjk

+ less singular terms

)
,

(17)
that cancels the divergence coming from eq. (16) itself. Further, since this is univer-
sally true3, we may apply eq. (17) again to get an approximation to the corrections

3Up to process-dependent non-singular terms similar to those appearing in eqs. (12) & (13).
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Figure 6: Coefficients of the perturbative series covered by LO+LL approximations. Green
(darker) shading represents the full perturbative coefficient at the respective k and `. Yellow
(lighter) shading represents an LL approximation to it.

generated by eq. (16) at the next order and so on. By adding such terms explic-
itly, order by order, we may bootstrap our way around the entire perturbative series,
using eq. (16) to move horizontally and eq. (17) to move back up along diagonals
of constant n = k + `. With real-virtual cancellations now restored, the entire per-
turbative phase space can be covered also for k ≥ 1, resulting in the picture shown
in fig. 6, with the lighter (yellow) shading used to emphasize that only the leading
singular parts (denoted LL, for leading-logarithmic) are included for k + ` ≥ 1.

Physically speaking, unitarity thus implies that there is a detailed balance between
the real and virtual corrections: the negative contribution to the n-parton bin must
be exactly minus the integral of the positive contribution to the (n + 1)-parton one
(modulo non-singular terms), and so on.

In the framework of parton-shower algorithms, this relationship is represented
in terms of an evolution of the event structure, with precisely balanced gain/loss
terms driven by the bremsstrahlung singularities, as represented e.g. by DGLAP
(HERWIG [51,52] and PYTHIA [53,54]) or dipole/antenna functions (ARIADNE [45,
55], SHERPA [56,57], and VINCIA [58,59]). We consider how to recast perturbation
theory in this way, as a Markov-Chain evolution process, in the next subsection.

The quality of the approximation depends on how many terms besides the leading
one shown in eq. (16) are included in the game. Parton showers normally include at
least the soft and collinear terms of eqs. (10) & (11), as well as several formally sub-
leading improvements, such as clever renormalization-scale choices [59,60], explicit
momentum conservation, spin-correlation effects [61–63], higher-order coherence
effects [64], finite-width effects [65], etc. Thus, the final result is typically much
closer to reality than a corresponding “strictly LL” analytical calculation would be.

2.6 Perturbation Theory with Markov Chains

Consider again the Born-level cross section for an arbitrary hard process, F , differ-
entially in an arbitrary (IR-safe) observable O:

dσ
(0)
F

dO

∣∣∣∣∣
Born

=

∫
dΦF |M(0)

F |2 δ(O −O(ΦF )) , (18)

where the integration runs over all Born-level momentum configurations, ΦF (for
hadron collisions, include integrals over parton luminosities as well), and the δ func-
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tion projects out the cross section for each value of O. To make the connection to
parton showers, we insert an operator, S, that acts on the Born-level final state before
the observable is evaluated, i.e.,

dσF
dO

∣∣∣∣
Shower

=

∫
dΦF |M(0)

F |2 S(ΦF ,O) . (19)

Formally, this operator — the evolution operator — will be responsible for generat-
ing all (real and virtual) higher-order corrections to the Born-level expression. The
measurement δ function appearing explicitly in eq. (18) is now implicit in S.

Physically, the job of S is to generate stochastic bremsstrahlung emissions ac-
cording to the radiation functions discussed previously (DGLAP or dipole/antenna
functions), subject to the modifications imposed by unitarity. In a shower context,
we thus interpret the radiation functions as the basic probability density for a radiator
(parton or dipole/antenna) to undergo a branching, per unit phase-space volume,

dP (Φ)

dΦ
= g2

s Cr Ar(Φ) , (20)

where Cr and Ar stand for generic colour factors and radiation functions. (If there
are several partons / dipoles / antennae, the total probability for branching of the
event as a whole is obtained as a sum of such terms, see below.)

Unitarity implies that the phase-space density, eq. (20), must be modified to take
detailed balance into account. This is natural in a picture in which each radiator un-
dergoes an evolution, during which it may branch or not, as a function of some evo-
lution scale, QE. As QE is lowered, the number of unbranched radiators decreases,
while the number of branched ones increases, reflecting unitarity. The resummed
branching probability, which takes into account the probability that a radiator re-
mains unbranched between the scales QE1 and QE2, is then

dPres(Φ)

dΦ
= g2

s Cr Ar(Φ) ∆(Φ, Q2
E1, Q

2
E2) , (21)

with the probability that there is no evolution (i.e., no emissions) between the scales
QE1 and QE2 given by the so-called Sudakov factor, ∆, defined by

∆(ΦF , Q
2
E1, Q

2
E2) = exp

[
−
∑

r

∫ Q2
E1

Q2
E2

dΦr
F+1

dΦF

g2
s Cr Ar(ΦF+1)

]
. (22)

This exponential is completely analogous to the one arising, e.g., in the problem of
nuclear decay, with the difference that our “decay constant”, dP/dΦ, here depends
explicitly on time (as measured by the evolution variable). The shower is thus nat-
urally ordered such that emissions with large values of QE (corresponding to short
time- and distance-scales) are considered first. Note that, in regions of phase space
where Ar is small, ∆ will be close to unity; the corrections from unitarity are small,
and there is little or no evolution. Conversely, in the singular regions, where QE → 0
and Ar →∞, we have ∆→ 0, implying that all events evolve.

The factor dΦr
F+1 /dΦF in eq. (22) defines the chosen phase-space factorization.

Our favorite is the so-called antenna factorization, whose principal virtue is that it

14



Antenna p⊥

QE = 2p⊥

≡ 2mijmjk

mijk

0.2

0.4

0.6

0.8

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

yij
y j

k

0.2

0.2

0.4

0.4

0.6

0.6 0.8

0.8

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

yij

y j
k

Antenna Mass

QE = mD

≡
√

2 min(mij ,mjk)

Figure 7: Example showing contours of two different evolution variables, over the triangular
antenna phase space (the axes are the branching invariants, sij and sjk, normalized by sijk).

is the simplest Lorentz invariant factorization which covers all of phase space while
only involving on-shell momenta. For completeness, its form is

dΦr
F+1

dΦF

=
dΦr

3

dΦ2

= dsij dsjk
dφ

2π

1

16π2sr
, (23)

i.e., it is a 2 → 3 factorization which involves just one parent colour-anticolour pair
for each r, with invariant mass squared sr = (pi + pj + pk)

2. (Other choices, e.g.
more global ones involving all partons in the event, or less global ones with a single
parton playing the dominant role as emitter, are also possible.)

Depending on the shower algorithm, QE may be defined as a parton virtual-
ity (virtuality-ordered showers [53]), as a transverse-momentum scale (p⊥-ordered
showers [45, 54]), or as a combination of energies times angles (angular order-
ing [64]). During the shower evolution, each model effectively “sweeps” over phase
space in the order implied by these contours, illustrated in fig. 7. E.g., a p⊥-ordered
antenna shower (left) will treat a hard-collinear branching as occurring “earlier”
than a soft one, while a mass-ordered antenna shower (right) will tend to do the op-
posite. This affects the tower of virtual corrections generated by the Sudakov factors
for each shower model.

Skipping intermediate steps, the form of the all-orders pure-shower Markov chain,
for the evolution of an event between two evolution scales QE1 > QE2, is,

S(ΦF , Q
2
E1, Q

2
E2,O) = ∆(ΦF , Q

2
E1, Q

2
E2) δ (O −O(ΦF ))︸ ︷︷ ︸

F + 0 exclusive above QE2

+
∑

r

∫ Q2
E1

Q2
E2

dΦr
F+1

dΦF

g2
s Cr Ar(ΦF+1) ∆(ΦF , Q

2
E1, Q

2
F+1) S(ΦF+1, Q

2
F+1, Q

2
E2,O)

︸ ︷︷ ︸
F + 1 inclusive above QE2

.

(24)
The term on the first line of eq. (24) thus represents all events that did not evolve
as the resolution scale was lowered from QE1 to QE2, while the second line contains
a sum and phase-space integral over those events that did evolve — including the
insertion of S(ΦF+1) representing the possible further evolution of the event and
completing the iterative definition of the Markov chain.

Algorithmically, branchings are generated with this distribution, starting from a
uniformly distributed random number R ∈ [0, 1], by solving the equation,

R = ∆(Q2
E1, Q

2
E) (25)
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Figure 8: The double-counting problem caused by naively adding ME calculations with diff-
erent numbers of legs. The notation LOn denotes the LO matrix element for F + n partons.

for QE. Two complementary phase-space variables are then generated (usually la-
beled z and φ), according to the shape of the radiation function over a phase-space
contour of constant QE. From these, the model-independent set of trial phase-
space variables (sij, sjk, φ) are determined by inversion of the defining relations
QE(sij, sjk) and z(sij, sjk), and the full kinematics (i.e., four-momenta) of the trial
branching can then be constructed, see e.g. [58,59,66]. If the branching is accepted
(MC overestimates used in the previous steps result in an accept probability < 1
here), the mother parton(s) are replaced by the daughter ones in the event record.
Otherwise the pre-branching system is kept. In both cases, the evolution is restarted
from the current value of QE.

2.7 Matrix-Element Matching at LO and NLO

The basic problem that leads to matrix-element/parton-shower matching can be il-
lustrated in a very simple way. Assume again that we have performed an LO+LL
calculation for some process, F , as in the left-hand pane of fig. 8, and that we also
have an LO+LL calculation based on the LO matrix element for F + 1 (restricted to
cover only the phase-space region with at least one hard resolved jet, to avoid the
singularities), illustrated by the half-shaded boxes in the middle pane of fig. 8.

Desiring to combine these two samples, we might attempt simply to add them
together. However, the LL terms for F + 1 would then be counted twice: once from
the shower off F and once from the matrix element for F + 1, illustrated by the dark
shaded (red) areas of the right-hand pane of fig. 8. This double-counting problem
would grow worse if we attempted to add more matrix elements, with more legs.
The cause is very simple. Each such calculation corresponds to an inclusive cross
section, and hence naive addition would give

σtot = σ0;incl + σ1;incl = σ0;excl + 2σ1;incl . (26)

Recall the definition of inclusive and exclusive cross sections: “F inclusive” ↔ “F
plus anything”. “F exclusive”↔ “F and only F ”. Thus, σF ;incl =

∑∞
k=0 σF+k;excl.

Instead, we must match the coefficients calculated by the two parts of the full
calculation — showers and matrix elements — more systematically, for each order
in perturbation theory, so that the nesting of inclusive and exclusive cross sections
is respected without overcounting. Given a parton shower and a matrix-element
generator, there are fundamentally three different ways in which we can consider
matching the two [66], as will now be discussed.
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Figure 9: ME Corrections. PYTHIA (left), POWHEG (middle), and VINCIA (right). Only one
event sample is produced by each of these methods, hence no sub-components are shown.
The notation (N)LOn denotes the (N)LO matrix element for F + n partons.

2.7.1 ME Corrections

The oldest, and in my view most attractive, approach [53,67] consists of working out
the shower approximation to a given fixed order, and correcting the shower splitting
functions at that order by a multiplicative factor given by the ratio of the matrix
element to the shower approximation, phase-space point by phase-space point. We
may sketch this as

Matched =

shower︷ ︸︸ ︷
Approximate ×

multiplicative correction︷ ︸︸ ︷
Exact

Approximate
. (27)

When these correction factors are inserted back into the shower evolution, they guar-
antee that the shower evolution off n− 1 partons correctly reproduces the n-parton
matrix elements, without the need to generate a separate n-parton sample. That is,
the shower approximation is essentially used as a pre-weighted (stratified) all-orders
phase-space generator, on which a more exact answer can subsequently be imprinted
order by order in perturbation theory. Since the shower is already optimized for
exactly the kind of singular structures that occur in QCD, very fast computational
speeds can therefore be obtained with this method [68].

In the original approach [53,67], used by PYTHIA [10,69], this was only worked
out for one additional emission beyond the basic resonance-decay [70] or hard-
scattering process. In POWHEG [71, 72], it was extended to include also virtual
corrections to the Born-level matrix element. Finally, in VINCIA [42, 59, 66], it has
been extended to include arbitrary numbers of emissions, though that method has
so far only been applied to final-state showers.

An illustration of the perturbative coefficients included in each of these approaches
is given in fig. 9, as usual with green (darker shaded) boxes representing exact coef-
ficients and yellow (light shaded) boxes representing logarithmic approximations.

Finally, two more properties unique to this method deserve mention. Firstly,
since the corrections modify the actual shower evolution kernels, the corrections
are automatically resummed in the Sudakov exponential, which should improve the
logarithmic precision once k ≥ 2 is included, and secondly, since the shower is
unitary, an initially unweighted sample of (n − 1)-parton configurations remains
unweighted, with no need for a separate event-unweighting or event-rejection step.
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SUBTRACTION: MC@NLO
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Figure 10: In the middle pane, cyan boxes denote non-singular correction terms, while the
egg-colored ones denote showers off such corrections, which cannot lead to double-counting
at the LL level. The notation (N)LOn denotes the (N)LO matrix element for F + n partons.

2.7.2 Subtraction

Another way of matching two calculations is by subtracting one from the other and
correcting by the difference, schematically

Matched =

shower expansion︷ ︸︸ ︷
Approximate +

additive correction︷ ︸︸ ︷
(Exact− Approximate) . (28)

This looks very much like the structure of a subtraction-based NLO fixed-order cal-
culation, with the shower approximation playing the role of subtraction terms. This
forms the basis of the MC@NLO [73,74] strategy, illustrated in the top pane of fig. 10.

In this approach, the subtraction terms depend explicitly on the shower model,
and negative-weight events will generally occur, for instance in phase-space points
where the approximation is larger than the ME answer. Regarding negative weights,
imagine a worst-case scenario in which 100 positive-weight events have been gen-
erated, along with 99 negative-weight ones (assuming each weight has the same
absolute value). The statistical precision of the MC answer would be equivalent to
one event, for 200 generated, i.e., a big loss in convergence rate. In practice, genera-
tors like MC@NLO “only” produce around 10% or less events with negative weights,
so the convergence rate should not be severely affected for ordinary applications.

Nevertheless, the problem of negative weights motivated the development of the
POWHEG approach (discussed above), which was constructed specifically to prevent
negative-weight events from occurring and simultaneously to be more independent
of which parton-shower algorithm it is used with.

2.7.3 Slicing

The most commonly encountered matching type is currently based on separating
(slicing) phase space into two regions, one of which is supposed to be mainly de-
scribed by hard matrix elements and the other, by the shower.

This type of approach was first used in HERWIG [75], to include matrix-element
corrections for one emission beyond the basic hard process [76, 77]. This is illus-
trated in fig. 11. The method has since been generalized by several independent
groups to include LO matrix elements for arbitrary numbers of additional legs, the
most well-known of these being the CKKW [78], CKKW-L [79, 80], and MLM [81,
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SLICING: HERWIG
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Figure 11: HERWIG’s original matching scheme [76, 77], in which the dead zone of the
HERWIG shower (represented by LLH) was used as an effective “matching scale”.

82] approaches. There is also a unitarity-improved approach to LO slicing, called
UMEPS [83]. Finally, there are by now also several proposals for how to combine
NLO samples with multiple parton multiplicities, such as MENLOPS [84], FXFX [85],
UNLOPS [86], and others [59,87,88]. Here, we focus on slicing for LO approaches.

The defining characteristic of slicing schemes is that the shower approximation is
set to zero above some scale, either due to the presence of dead zones in the shower,
as in HERWIG, or by explicitly vetoing any emissions above a certain matching scale.
The empty part of phase space can then be filled by separate events generated ac-
cording to higher-multiplicity tree-level matrix elements. The practical limit on the
number of additional partons is around 3 or 4, due to computational complexity
(which rises very rapidly in these approaches, see e.g., [42,68]).

In order to match smoothly with the shower calculation, the higher-multiplicity
matrix elements must be associated with Sudakov form factors (representing the vir-
tual corrections that would have been generated if a shower had produced the same
phase-space configuration), and their αs factors must be chosen so that, at least
at the matching scale, they become identical to the choices made on the shower
side [89]. This can be done by constructing “fake parton-shower histories” for the
higher-multiplicity matrix elements. By applying a sequential jet clustering algo-
rithm, a tree-like branching structure can be created that has the same dominant
structure as that of a parton shower. Given the fake shower tree, αs factors can be
chosen for each vertex with argument αs(p⊥) and Sudakov factors can be computed
for each internal line in the tree. In the CKKW method, these Sudakov factors are
estimated analytically, while the MLM and CKKW-L, and UMEPS methods compute
them numerically, from the actual shower evolution.

Below the matching scale, the small difference between the matrix elements and
the shower approximation can be dropped (since their leading singularities are iden-
tical and this region by definition includes no hard jets), yielding the pure shower
answer in that region. Above the matching scale, the matched result is identical to
the matrix element (ME), modulo higher-order (Sudakov and αs) corrections. This
type of strategy is illustrated in fig. 12.

As emphasized above, since this strategy is discontinuous across phase space,
a main point here is to ensure that the behavior across the matching scale be as
smooth as possible. Technical details of the implementation are important, and the
dependence on the unphysical matching scale may be larger than expected unless
the implementation matches the theoretical algorithm precisely [79,80,83,90]. Fur-
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Figure 12: Slicing, including two additional tree-level matrix elements beyond the basic
process, with an explicit veto on the parton showers, denoted LLV.

thermore, since the Sudakov factors are generally computed using showers (MLM,
L-CKKW, UMEPS), while the real corrections are computed using matrix elements,
care must be taken not to (re-)introduce differences that could break the detailed
real-virtual balance that ensures unitarity among the singular parts, see e.g., [87,89].

It is advisable not to choose the matching scale too low. This is again essentially
due to the approximate scale invariance of QCD imploring us to write the matching
scale as a ratio, rather than as an absolute number. If one uses a very low matching
scale, the higher-multiplicity matrix elements will already be quite singular, leading
to very large LO cross sections before matching. After matching, these large cross
sections are tamed by the Sudakov factors produced by the matching scheme, and
hence the final cross sections may still look reasonable. But the higher-multiplicity
matrix elements in general contain subleading singularity structures, beyond those
accounted for by the shower, and hence unitarity has been compromised [83, 87].
We therefore recommend not to take the matching scale lower than about an order
of magnitude below the characteristic scale of the hard process.

3 Hadronization and Soft Hadron-Hadron Physics

We here give a very brief overview of the main aspects of soft QCD that are rele-
vant for hadron-hadron collisions, such as hadronization, minimum-bias and soft-
inclusive physics, and the so-called underlying event. This will be kept at a pedes-
trian level and is largely based on the reviews in [1–3].

In the context of event generators, hadronization denotes the process by which a
set of coloured partons (after showering) is transformed into a set of colour-singlet
primary hadrons, which may then subsequently decay further, to secondary hadrons.
This non-perturbative transition takes place at the hadronization scale Qhad, which by
construction is identical to the infrared cutoff of the parton shower. In the absence
of a first-principles solution to the relevant dynamics, event generators use QCD-
inspired phenomenological models to describe this transition.

The problem can be stated as follows: given a set of partons resolved at a scale of
Qhad ∼ 1 GeV, we need a “mapping” from this set onto a set of on-shell colour-singlet
(i.e., confined) hadronic states. MC models do this in three steps:

1. Map the partonic system onto a continuum of high-mass hadronic states (called
“strings” or “clusters”).
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2. Iteratively map strings/clusters onto discrete set of primary hadrons (via string
breaks / cluster splittings / cluster decays).

3. Sequential decays into secondaries (ρ→ ππ, Λ→ nπ, π0 → γγ, ...).

The physics governing this mapping is non-perturbative. However, we do have some
knowledge of the properties that such a solution must have. For instance, Poincaré
invariance, unitarity, and causality are all concepts that apply beyond perturbation
theory. In addition, lattice QCD provides us a means of making explicit quantitative
studies in a genuinely non-perturbative setting (albeit only of certain questions).

An important result in “quenched” lattice QCD4 is that the potential between a
quark and an antiquark appears to grow linearly with the separation, at distances
greater than about a femtometer. This is known as “linear confinement”, and it
forms the starting point for the string model of hadronization, discussed below in sec-
tion 3.1. Alternatively, a property of perturbative QCD called “preconfinement” [91]
is the basis of the cluster model of hadronization, described in [1,2].

In the generator landscape, PYTHIA uses string fragmentation, while HERWIG

and SHERPA use cluster fragmentation. Note that the so-called parton level that can
be obtained by switching off hadronization in an MC generator, is not a universal
concept, since each model defines the hadronization scale differently, with different
tunes using different values for it. Comparisons to distributions at this level (i.e.,
with hadronization switched off) may therefore be used to provide an idea of the
overall impact of hadronization corrections within a given model, but should be
avoided in the context of physical observables. Note also that the corresponding MC
fragmentation functions are intrinsically defined at the hadronization scale. They can
therefore not be compared directly to those that are used in fixed-order / analytical-
resummation contexts, which are typically defined at a factorization scale of order
the scale of the hard process.

Soft hadron-hadron processes, like diffraction, minimum-bias and the underlying
event, are discussed in sections 3.2 & 3.3. We round off with a discussion of Monte
Carlo tuning in section 3.4.

3.1 String Model

Starting from early concepts developed by Artru and Mennessier [92], several hadroniza-
tion models based on strings were proposed in the late 70’ies and early 80’ies. Of
these, the most widely used today is the so-called Lund model [93], implemented in
the PYTHIA code. We concentrate on that particular model here, though many of the
overall concepts would be shared by any string-inspired method.

Consider the production of a qq̄ pair from vacuum, for instance in the process
e+e− → γ∗/Z → qq̄ → hadrons. As the quarks move apart, linear confinement
implies that a potential

V (r) = κ r (29)

is asymptotically reached for large distances, r. Such a potential describes a string
with tension (energy per unit length) κ, which has been determined (from hadron

4Quenched QCD implies no “dynamical” quarks, i.e., no g → qq̄ splittings allowed.
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Figure 13: Illustration of the transition between a Coulomb potential at short distances to
the string-like one of eq. (29) at large qq̄ separations.

mass spectroscopy) to have the value κ ∼ 1 GeV/fm ∼ 0.2 GeV2.
The string can be thought of as parameterizing the position of the axis of a cylin-

drically symmetric flux tube, illustrated in fig. 13. Such simple q− q̄ strings form the
starting point for the string model. More complicated multi-parton topologies are
treated by representing gluons as transverse “kinks”, e.g., q − g − q̄. The space-time
evolution is slightly more involved [93], and modifications to the fragmentation
model to handle stepping across gluon corners have to be included, but the main
point is that there are no separate free parameters for gluon jets. Differences with
respect to quark fragmentation arise simply because quarks are only connected to a
single string piece, while gluons have one on either side, increasing the energy loss
per unit (invariant) time from a gluon to the string by a factor of 2 relative to quarks,
which can be compared to the ratio of colour Casimirs CA/CF = 2.25. Another ap-
pealing feature of the model is that low-energy gluons are absorbed smoothly into
the string, without leading to modifications. This improves the stability of the model
with respect to variations of the infrared behaviour of the parton shower.

As the partonic string endpoints move apart, their kinetic energy is gradually
converted to potential energy, stored in the growing string spanned between them.
In the “quenched” approximation, in which g → qq̄ splittings are not allowed, this
process would continue until the endpoints have lost all their momentum, at which
point they would reverse direction and be accelerated by the now shrinking string.

In the real world, quark-antiquark fluctuations inside the string field can make
the transition to become real particles by absorbing energy from the string, thereby
screening the original endpoint charges from each other and breaking the string
into two separate colour-singlet pieces, (qq̄) → (qq̄′) + (q′q̄), illustrated in fig. 14 a.
This process then continues until only ordinary hadrons remain. (We will give more
details on the individual string breaks below.)

Since the string breaks are causally disconnected (as can easily be realized from
space-time diagrams [93]), they do not have to be considered in any specific time-
ordered sequence. In the Lund model, the string breaks are generated starting with
the leading (“outermost”) hadrons, containing the endpoint quarks, and iterating in-
wards towards the center of the string, alternating randomly between fragmentation
off the left- and right-hand sides, respectively, fig. 14 b. One can thereby split off a
single well-defined hadron in each step, with a mass that, for unstable hadrons, is
selected according to a Breit-Wigner distribution.

The details of the individual string breaks are not known from first principles.
The Lund model invokes the idea of quantum mechanical tunneling, which leads to
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Figure 14: a) String breaking by quark pair creation in the string field. b) Fragmentation
from the outside-in, splitting off a single on-shell hadron in each step.

a Gaussian suppression of the energies and masses imparted to the produced quarks,

Prob(m2
q, p

2
⊥q) ∝ exp

(−πm2
q

κ

)
exp

(−πp2
⊥q

κ

)
, (30)

where mq is the mass of the produced quark and p⊥ is the transverse momentum
imparted to it by the breakup process (with the q̄ having the opposite p⊥).

Due to the factorization of the p⊥ and m dependence implied by eq. (30), the p⊥
spectrum of produced quarks in this model is independent of the quark flavour, with
a universal average value of

〈
p2
⊥q
〉

= σ2 = κ/π ∼ (250 MeV)2 . (31)

Bear in mind that “transverse” is here defined with respect to the string axis. Thus,
the p⊥ in a frame where the string is moving is modified by a Lorentz boost factor.
Also bear in mind that σ2 is here a purely non-perturbative parameter. In a Monte
Carlo model with a fixed shower cutoff Qhad, additional unresolved soft-gluon radi-
ation below Qhad may give a larger effective amount of “non-perturbative” p⊥. Note
that, since hadrons receive p⊥ contributions from two breakups, one on either side,
their average transverse momentum squared will be twice as large,

〈
p2
⊥h
〉

= 2σ2 . (32)

The mass suppression implied by eq. (30) is less straightforward to interpret.
Since light-quark masses are ambiguous, the value of the strangeness suppression
must effectively be extracted from experimental measurements, e.g., of the K/π ra-
tio, with a resulting suppression of roughly 2s/(u+ d) ∼ 0.2. The expected suppres-
sion of c quarks is of order 10−11. Heavy quarks can therefore safely be considered
to be produced only in the perturbative stages and not by the soft fragmentation.

Baryon production can be incorporated in the same basic picture [94], by al-
lowing string breaks to occur also by the production of pairs of so-called diquarks,
loosely bound states of two quarks in an overall 3̄ representation (e.g., red + blue =
antigreen). Again, the relative rate of diquark-to-quark production must be extracted
from measurements, e.g., of the p/π ratio. More advanced scenarios for baryon pro-
duction have also been proposed, e.g. the so-called popcorn model [95, 96], which
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Figure 15: Illustration of the Lund symmetric fragmentation function (normalized to unity).
Left: variation of the a parameter, from 0.1 (blue) to 0.9 (red), with fixed b. Right: variation
of the b parameter, from 0.5 (red) to 2 (blue) GeV −2, with fixed a.

complements the diquark picture and acts to decrease the correlations among neigh-
boring baryon-antibaryon pairs by allowing mesons to be formed inbetween them,
and a model based on string junctions [97] which can be applied to the description
of beam remnants, and then acts to increase baryon stopping [98].

This brings us to the next step of the algorithm: assignment of the produced
quarks within hadron multiplets. Using a nonrelativistic classification of spin states,
the fragmenting q (q̄) may combine with the q̄′ (q′) from a newly created breakup to
produce either a vector or a pseudoscalar meson, or, if diquarks are involved, either a
spin-1/2 or spin-3/2 baryon. Unfortunately, the string model is entirely unpredictive
in this respect, and this is therefore the sector that contains the largest amount
of free parameters. From spin counting alone, one would expect the ratio V/S of
vectors to pseudoscalars to be 3, but this is modified by the V –S mass splittings,
which implies a phase-space suppression of vector production, with corresponding
suppression parameters to be extracted from data. The production of higher meson
resonances is assumed to be low in a string framework5. For diquarks, separate
parameters control the relative rates of spin-1 diquarks vs. spin-0 ones and, likewise,
have to extracted from data.

With p2
⊥ and m2 now fixed, the final step is to select the fraction, z, of the frag-

menting endpoint quark’s longitudinal momentum that is carried by the created
hadron. In this respect, the string picture is substantially more predictive than for
the flavour selection. Firstly, the requirement that the fragmentation be independent
of the sequence in which breakups are considered (causality) imposes a “left-right
symmetry” on the fragmentation function, f(z), with the solution

f(z) ∝ 1

z
(1− z)a exp

(
−b (m2

h + p2
⊥h)

z

)
, (33)

which is known as the Lund symmetric fragmentation function (normalized to unit
integral). The a and b parameters, illustrated in fig. 15, are the only free parameters

5The four L = 1 multiplets are implemented in PYTHIA, but are disabled by default, largely because
several states are poorly known and thus may result in a worse overall description when included.
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Figure 16: Illustration of the iterative selection of flavours and momenta in the Lund model.

of the fragmentation function (though a can be flavour-dependent). Note that the
explicit mass dependence in f(z) implies a harder fragmentation function for heavier
hadrons (in the rest frame of the string).

For massive endpoints (e.g., c and b quarks), which do not move along straight
lightcone sections, the exponential suppression with string area leads to modifica-
tions of the form [99], f(z) → f(z)/zbm

2
Q, with mQ the heavy-quark mass. Strictly

speaking, this is the only fragmentation function that is consistent with causality in
the string model, though a few alternative forms are typically provided as well.

As a by-product, the probability distribution in invariant time τ of q′q̄′ breakup
vertices, or equivalently Γ = (κτ)2, is also obtained, with dP/dΓ ∝ Γa exp(−bΓ)
implying an area law for the colour flux [100], and the average breakup time lying
along a hyperbola of constant invariant time τ0 ∼ 10−23s [93].

We may also ask, e.g., how many units of rapidity does the particle production
from a string span? Measuring pz along the string direction and defining rapidity by

y =
1

2
ln

(
E + pz
E − pz

)
, (34)

the absolute highest rapidity that can be reached, by a pion traveling exactly along
the string direction and taking all of the endpoint quark’s energy, is ymax = ln(2Eq/mπ).
I.e., the rapidity region covered by a fragmenting string scales logarithmically with
the energy, and since the density of hadrons produced per unit rapidity is roughly
constant (modulo endpoint effects), the average number of hadrons produced by
string fragmentation likewise scales logarithmically with energy.

The iterative selection of flavours, p⊥, and z values is illustrated in fig. 16. A
parton produced in a hard process at some high scale QUV emerges from the parton
shower, at the hadronization scale QIR, with 3-momentum ~p = (~p⊥0, p+), where the
“+” on the third component denotes “light-cone” momentum, p± = E ± pz. Next,
an adjacent dd̄ pair from the vacuum is created, with relative transverse momenta
±p⊥1. The fragmenting quark combines with the d̄ from the breakup to form a π+,
which carries off a fraction z1 of the total lightcone momentum p+. The next hadron
carries off a fraction z2 of the remaining momentum, etc.
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3.2 Soft Hadron-Hadron Processes

The total hadron-hadron (hh) cross section is around 100 mb at LHC energies, grow-
ing slowly with the CM energy, σtot(s) ∝ s0.08. There are essentially four types of
physics processes, which together make up σtot:

1. Elastic scattering: hh→ hh;

2. Single diffractive dissociation: hh → h + gap + X, with “gap” denoting an
empty rapidity region, and X anything that is not the original beam particle;

3. Double diffractive dissociation: hh→ X + gap +X (both hadrons “blow up”);

4. Inelastic non-diffractive scattering: everything else.

In principle, higher “multi-gap” diffractive components may be defined as well, the
most important one being central diffraction: hh→ h+ gap +X + gap + h.

Some important differences exist between theoretical and experimental termi-
nology [101]. In the experimental setting, diffraction is defined by an observable
rapidity gap, with |∆y|gap ∼> 3 typically giving clean diffractive samples. In the MC
context, however, each diffractive process type produces a whole spectrum of gaps,
with small ones suppressed but not excluded. Likewise, events of non-diffractive ori-
gin may produce accidental rapidity gaps, now with large ones suppressed (exponen-
tially) but not excluded, and in the transition region there could even be quantum
mechanical interference between the two. Due to this unphysical model dependence
of theoretical definitions of diffraction, we strongly advise to phrase measurements
first and foremost in terms of physical observables, and only seek to connect with
theory models as a second, separate, step.

Another potentially confusing term is “minimum bias” (MB). This originates from
the experimental requirement of a minimal energy or number of hits in a given
(experiment-dependent) instrumented region near the beam, used to determine
whether there was any non-trivial activity in the event, or not. This represents
the smallest possible “trigger bias” that the corresponding experiment is capable
of. There is thus no universal definition of “min-bias”; each experiment has its own.

3.3 Multiple Parton Interactions

In this subsection, we focus on the physics of multiple parton interactions (MPI)
as a theoretical basis for understanding both inelastic, non-diffractive processes
(minimum-bias), as well as the so-called underlying event (a.k.a. the jet pedestal
effect). Keep in mind, however, that especially at low multiplicities, and when gaps
are present, the contributions from diffractive processes should not be ignored.

Due to the simple fact that hadrons are composite, multi-parton interactions (sev-
eral distinct parton-parton interactions in one and the same hadron-hadron collision)
will always be there — but how many, and how much additional energy and tracks
do they deposit in a given measurement region? The first detailed Monte Carlo
model for perturbative MPI was proposed by Sjöstrand in [102], and with some
variation this still forms the basis for most modern implementations [2].
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The first crucial observation is that the t-channel propagators appearing in per-
turbative QCD 2→ 2 scattering almost go on shell at low p⊥, causing the differential
cross sections to become very large, behaving roughly as

dσ2→2 ∝
dt

t2
∼ dp2

⊥
p4
⊥
. (35)

At LHC energies, this parton-parton cross section becomes larger than the total
hadron-hadron cross section at p⊥ scales of order 4− 5 GeV [103]. In the context of
MPI models, this is interpreted straightforwardly to mean that each hadron-hadron
collision contains several parton-parton collisions.

In the limit that all the partonic interactions are independent and equivalent, one
would simply have a Poisson distribution in the number of MPI, with average

〈n〉(p⊥min) =
σ2→2(p⊥min)

σtot

, (36)

with p⊥min a lower cutoff scale which we shall return to below, and σtot a measure
of the inelastic hadron-hadron cross section. This simple reinterpretation in fact
expresses unitarity; instead of the total interaction cross section diverging as p⊥min →
0 (which would violate unitarity), we have restated the problem so that it is now the
number of MPI per collision that diverges, with the total cross section remaining finite.

Two important ingredients remain to fully regulate the remaining divergence.
Firstly, the interactions cannot use up more momentum than is available in the par-
ent hadron. This suppresses the large-n tail of the estimate above. In PYTHIA-based
models, the MPI are ordered in p⊥ [54, 102], and the parton densities for each suc-
cessive interaction are explicitly constructed so that the sum of x fractions can never
be greater than unity. In the HERWIG models [104, 105], instead the uncorrelated
estimate of 〈n〉 above is used as an initial guess, but the generation of actual MPI is
stopped once the energy-momentum conservation limit is reached.

The second ingredient invoked to suppress the number of interactions, at low
p⊥ and x, is colour screening; if the wavelength ∼ 1/p⊥ of an exchanged coloured
parton becomes larger than a typical colour-anticolor separation distance, it will
only see an average colour charge that vanishes in the limit p⊥ → 0, hence lead-
ing to suppressed interactions. This provides an infrared cutoff for MPI similar to
that provided by the hadronization scale for parton showers. A first estimate of the
colour-screening cutoff would be the proton size, p⊥min ≈ ~/rp ≈ 0.3 GeV ≈ ΛQCD,
but empirically this appears to be far too low. In current models, one replaces the
proton radius rp in the above formula by a “typical colour screening distance,” i.e.,
an average size of a region within which the net compensation of a given colour
charge occurs. This number is not known from first principles, though it may be
related to saturation [106]. In current MPI models, it is perceived of simply as an
effective cutoff parameter, to be determined from data.

Note that the partonic cross sections depend upon the PDF set used, and therefore
the optimal value to use for the cutoff will also depend on this choice [107]. Note
also that the cutoff does not have to be energy-independent. Higher energies imply
that parton densities can be probed at smaller x values, where the number of par-
tons rapidly increases. Partons then become closer packed and the colour-screening
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distance d decreases. The uncertainty on the scaling of the cutoff is a major concern
when extrapolating between different collider energies [107–109].

We now turn to the origin of the observational fact that hard jets appear to sit
on top of a higher “pedestal” of underlying activity than events with no hard jets.
That is, the so-called “underlying event” (UE) is much more active, with larger fluc-
tuations, than the average min-bias event. This is interpreted as a consequence
of impact-parameter-dependence: in peripheral collisions, only a small fraction of
events contain any high-p⊥ activity, whereas central collisions are more likely to con-
tain at least one hard scattering; a high-p⊥ triggered sample will therefore be biased
towards small impact parameters, b, with a large number of MPI (and associated
increased activity). The ability of a model to describe the shape of the pedestal
(e.g. to describe both MB and UE distributions simultaneously) therefore depends
upon its modeling of the b-dependence, and correspondingly the impact-parameter
shape constitutes another main tuning parameter. A detailed discussion of impact-
parameter dependent models goes beyond the scope of these lectures; see [98,102].

For hard processes at the LHC at 13 TeV, the transverse energy, ET , in the UE
is expected to be about 3.3 GeV per unit ∆R =

√
∆φ2 + ∆η2 area [109], though

with large event-to-event fluctuations of order ±2 GeV [110]. Thus, for example,
the ET originating from the UE, in a cone with radius 0.4 can be estimated to be
ETUE(R = 0.4) ∼ 1.6± 1 GeV, while the ET in cones with radii 0.7 and 1.0 would be
ETUE(R = 0.7) ∼ 5± 3 GeV and ETUE(R = 1.0) ∼ 10± 6 GeV, respectively.

3.4 Tuning

A main virtue of general-purpose Monte Carlo event generators is their ability to
provide a complete and fully differential picture of collider final states, down to
the level of individual particles. As has been emphasized in these lectures, the
achievable accuracy depends both on the inclusiveness of the chosen observable
and on the sophistication of the simulation itself. An important driver for the lat-
ter is obviously the development of improved theoretical models, e.g., by including
matching to higher-order matrix elements, more accurate resummations, or better
non-perturbative models, as discussed in the previous sections; but it also depends
crucially on the available constraints on the remaining free parameters of the model.
Using existing data (or more precise calculations) to constrain these is referred to as
generator tuning.

Keep in mind that generators attempt to deliver a global description of the data;
a tune is no good if it fits one distribution perfectly, but not any others. It is therefore
crucial to study the simultaneous degree of agreement or disagreement over many,
mutually complementary, distributions. A useful online resource for making such
comparisons can be found at the MCPLOTS web site [111] (which relies on comput-
ing power donated by volunteers, via the LHC@home project [112]). The analyses
come from the comprehensive RIVET analysis toolkit [14], which can also be run
stand-alone to make your own MC tests and comparisons.

Although MC models may appear to have a bewildering number of independently
adjustable parameters, it is worth noting that most of these only control relatively
small (exclusive) details of the event generation. The majority of the (inclusive)

28

http://mcplots.cern.ch
http://lhcathome.web.cern.ch/test4theory


physics is determined by only a few, very important ones, such as the value of the
strong coupling, in the perturbative domain, and the form of the fragmentation func-
tion for massless partons, in the non-perturbative one.

Armed with a good understanding of the underlying model, an expert would
therefore normally take a highly factorized approach to constraining the parame-
ters, first constraining the perturbative ones (using IR safe observables and/or more
precise theory calculations) and thereafter the non-perturbative ones, each ordered
in a measure of their relative significance to the overall modeling. This allows one
to concentrate on just a few parameters and a few carefully chosen distributions at
a time, reducing the full parameter space to manageable-sized chunks. Still, each
step will often involve more than one single parameter, and non-factorizable corre-
lations may still necessitate additional iterations from the beginning before a fully
satisfactory set of parameters is obtained.

Recent years have seen the emergence of automated tools that attempt to reduce
the amount of both computer and manpower required for this task, for instance by
making full generator runs only for a limited set of parameter points, and then inter-
polating between these to obtain approximations to what the true generator result
would have been for any intermediate parameter point, as, e.g., in PROFESSOR [113].
Automating the human expert input is more difficult. Currently, this is addressed by
a combination of input solicited from the generator authors (e.g., which parameters
and ranges to consider, which observables constitute a complete set, etc) and the
elaborate construction of non-trivial weighting functions that determine how much
weight is assigned to each individual bin in each distribution. The field is still bur-
geoning, and future sophistications are to be expected. Nevertheless, at this point
the overall quality of the tunes obtained with automated methods appear to at least
be competitive with the manual ones.

However, though we have very good LHC tunes for essentially all the general-
purpose generators by now, there are two important aspects which have so far been
sorely neglected, and which it is becoming increasingly urgent to address. The first
is that a central tune is not really worth much, unless you know what the uncer-
tainty on it is. A few individual proposals for systematic tuning variations have been
made [108,114], but so far there is no general approach for establishing MC uncer-
tainties by tune variations. The second issue is that virtually all generator tuning is
done at the “pure” LL shower level, and not much is known about what happens to
the tuning when matrix-element matching is subsequently included.

Finally, rather than performing one global tune to all the data, as is usually done,
a more systematic check on the validity of the underlying physics model could be
obtained by instead performing several independent optimizations of the model pa-
rameters for a range of different phase-space windows and/or collider environments.
In regions in which consistent parameter sets are obtained (with reasonable ∆χ2 val-
ues), the underlying model can be considered as interpolating well, i.e., it is univer-
sal. If not, a breakdown in the ability of the model to span different physical regimes
has been identified, and can be addressed, with the nature of the deviations giving
clues as to the nature of the breakdown. With the advent of automated tools, such
systematic studies are now becoming feasible, with a first example given in [107].

We round off by giving a sketch of a reasonably complete tuning procedure, with-
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out going into details about the parameters that control each of these sectors in
individual Monte Carlo models:

1) Keep in mind that inabilities of models to describe data is a vital part of the
feedback cycle between theory and experiment. Also keep in mind that perturba-
tion theory at (N)LO+LL is doing very well if it gets within 10% of a given IR safe
measurement. An agreement of 5% should be considered the absolute sanity limit,
beyond which it does not make any sense to tune further. For some quantities, e.g.,
ones for which the underlying modeling is known to be poor, an order-of-magnitude
agreement or worse may have to be accepted.

2) Final-State Radiation and Hadronization: mainly using LEP and other e+e−

collider data. On the IR safe side, there are event shapes and jet observables. On
the IR sensitive side, multiplicities and particle spectra. Pay attention to the high-z
tail of the fragmentation, where a single hadron carries a large fraction of an entire
jet’s momentum (most likely to give “fakes”). Depending on the focus of the tuning,
attention should also be paid to identified-particle rates and ratios (perhaps with a
nod to hadron-collider measurements), and to fragmentation in events containing
heavy quarks and/or gluon jets. Usually, more weight is given to those particles that
are most copiously produced. The scaling properties of IR safe vs. IR sensitive contri-
butions can be tested by comparing data at several different e+e− collider energies.

3) Initial-State Radiation, and “Primordial6 kT”: the main constraining distri-
bution is the dilepton p⊥ distribution in Drell-Yan events in hadron-hadron collisions.
Ideally, one would like to use several differentQ2 values, and/or complementary pro-
cesses, like p⊥(dijet) or p⊥(tt̄). For any observables containing explicit jets, be aware
that the UE can produce small horizontal shifts in jet p⊥ distributions, which may
in turn result in larger-than-expected vertical changes if the distributions are falling
sharply. Also note that the ISR evolution is sensitive to the choice of PDFs.

4) Initial-Final Connections: (radiation from colour lines connected to the ini-
tial state): jet broadening in hadron collisions. This is one of the most poorly con-
trolled parts of most MC models, highly sensitive to the treatment of coherence.
Keep in mind that it is not directly constrained by pure final-state observables, such
as LEP fragmentation, nor by pure initial-state observables, such as the Drell-Yan p⊥
spectrum, which is why we list it as a separate item here. The modeling of this as-
pect can have important effects on specific observables, a recent example being the
tt̄ forward-backward asymmetry at the Tevatron [115].

5) Underlying Event: Good constraints on the overall level of the underlying
event can be obtained by counting the summed transverse energy (more IR safe)
and/or particle multiplicities and average transverse momenta (more IR sensitive)
in regions transverse to a hard trigger jet (more IR safe) or particle (more IR sensi-
tive), see e.g. [116]. Constraints on the fluctuations of the underlying event are also
important, and can be obtained, e.g., by comparing to measurements of the RMS
of such distributions [110]. Again, note that the UE is sensitive to the choice of
PDFs [107].

6) Colour (Re-)Connections and other Final-State Interactions: By Final-
State Interactions, we intend a broad spectrum of possible collective effects that

6Primordial kT : an additional soft p⊥ component that is injected on top of the p⊥ generated by
the initial-state shower itself, see [2, Section 7.1].
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may be included to a greater or lesser extent in various models. These effects in-
clude: Bose-Einstein correlations (see, e.g., [117]), rescattering (see, e.g., [118]),
colour reconnections / string interactions (see, e.g., [119–121]), hydrodynamics
(see, e.g., [122]), etc. As a rule, these effects are soft and/or non-perturbative and
hence should not modify hard IR safe observables appreciably. They can, however,
have drastic effects on IR sensitive ones, such as particle multiplicities, momentum
distributions, and correlations, wherefore useful constraints are typically furnished
by measurements of spectra and correlations as functions of quantities believed to
serve as indicators of the strength of these phenomena (such as event multiplicity),
and/or by collective-flow-type measurements. Finally, if the model includes a uni-
versal description of underlying event and soft-inclusive QCD, as many MPI-based
models do, then minimum-bias data can also be used as a control sample, though
one must then be careful either to address diffractive contributions properly or to
include only gap-suppressed data samples. A complete MB and UE model should
also be able to describe the rise of the pedestal from MB to UE, e.g., in the transverse
UE observables (see above).

7) Beam Remnants: Constraints on beam remnant fragmentation (see, e.g.,
[98]) are most easily obtained in the forward region, but, e.g., the amount of baryon
transport from the remnant to a given rapidity region can also be used to probe
how much the colour structure of the remnant was effectively disturbed, with more
baryon transport indicating a larger amount of “beam baryon blowup”.
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[117] L. Lönnblad and T. Sjöstrand, “Modeling Bose-Einstein correlations at LEP-2,”
Eur.Phys.J. C2 (1998) 165, hep-ph/9711460.
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